To begin, we compute \(AA^T\) and \(A^TA\text{.}\)
\begin{equation*}
AA^T = \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 3 \amp 1 \amp 1 \end{array}\right]
\left[\begin{array}{rr} 1 \amp 3 \\ -1 \amp 1 \\ 3 \amp 1 \end{array}\right]
= \left[\begin{array}{rr} 11 \amp 5 \\ 5 \amp 11 \end{array}\right],
\end{equation*}
\begin{equation*}
A^TA = \left[\begin{array}{rr} 1 \amp 3 \\ -1 \amp 1 \\ 3 \amp 1 \end{array}\right]
\left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 3 \amp 1 \amp 1 \end{array}\right]
= \left[\begin{array}{rrr} 10 \amp 2 \amp 6 \\ 2 \amp 2 \amp -2\\
6 \amp -2 \amp 10 \end{array}\right].
\end{equation*}
Since
\(AA^T\) is
\(2\times 2\) while
\(A^T A\) is
\(3\times 3\text{,}\) and
\(AA^T\) and
\(A^TA\) have the same nonzero eigenvalues (by
Lemma 10.6.2), we compute the characteristic polynomial
\(c_{AA^T}(x)\) (because it is easier to compute than
\(c_{A^TA}(x)\)).
\begin{align*}
c_{AA^T}(z)\amp = \det(zI-AA^T)= \det \left[\begin{array}{cc}
z-11 \amp -5 \\ -5 \amp z-11 \end{array}\right] \\
\amp = (z-11)^2 - 25 \\
\amp = z^2-22z+121-25 \\
\amp = z^2-22z+96 \\
\amp = (z-16)(z-6).
\end{align*}
Therefore, the eigenvalues of \(AA^T\) are \(\lambda_1=16\) and \(\lambda_2=6\text{.}\) The eigenvalues of \(A^TA\) are \(\lambda_1=16\text{,}\) \(\lambda_2=6\text{,}\) and \(\lambda_3=0\text{,}\) and the singular values of \(A\) are \(\sigma_1=\sqrt{16}=4\) and \(\sigma_2=\sqrt{6}\text{.}\) By convention, we list the eigenvalues (and corresponding singular values) in non increasing order (i.e., from largest to smallest).
\(\textbf{To find the matrix: }\)
To construct the matrix \(V\) we need to find eigenvectors for \(A^TA\text{.}\) Since the eigenvalues of \(AA^T\) are distinct, the corresponding eigenvectors are orthogonal, and we need only normalize them.
\(\lambda_1=16\text{:}\) solve \((16I-A^TA)\mathbf{x}_1= \mathbf{0}\text{.}\)
\begin{equation*}
\left[\begin{array}{rrr|r}
6 \amp -2 \amp -6 \amp 0 \\ -2 \amp 14 \amp 2 \amp 0 \\ -6 \amp 2 \amp 6 \amp 0
\end{array}\right]
\rightarrow
\left[\begin{array}{rrr|r}
1 \amp 0 \amp -1 \amp 0 \\ 0 \amp 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 0 \amp 0
\end{array}\right],
\end{equation*}
so
\begin{equation*}
\mathbf{x}_1 =\left[\begin{array}{r} t \\ 0 \\ t \end{array}\right]
=t\left[\begin{array}{r} 1 \\ 0 \\ 1 \end{array}\right],
t\in \R.
\end{equation*}
\(\lambda_2=6\text{:}\) solve \((6I-A^TA)\mathbf{x}_2= \mathbf{0}\text{.}\)
\begin{equation*}
\left[\begin{array}{rrr|r}
-4 \amp -2 \amp -6 \amp 0 \\ -2 \amp 4 \amp 2 \amp 0 \\ -6 \amp 2 \amp -4 \amp 0
\end{array}\right]
\rightarrow
\left[\begin{array}{rrr|r}
1 \amp 0 \amp 1 \amp 0 \\ 0 \amp 1 \amp 1 \amp 0 \\ 0 \amp 0 \amp 0 \amp 0
\end{array}\right],
\end{equation*}
so
\begin{equation*}
\mathbf{x}_2=\left[\begin{array}{r} -s \\ -s \\ s \end{array}\right]
=s\left[\begin{array}{r} -1 \\ -1 \\ 1 \end{array}\right],
s\in \R.
\end{equation*}
\(\lambda_3=0\text{:}\) solve \((-A^TA)\mathbf{x}_3= \mathbf{0}\text{.}\)
\begin{equation*}
\left[\begin{array}{rrr|r}
-10 \amp -2 \amp -6 \amp 0 \\ -2 \amp -2 \amp 2 \amp 0 \\ -6 \amp 2 \amp -10 \amp 0
\end{array}\right]
\rightarrow
\left[\begin{array}{rrr|r}
1 \amp 0 \amp 1 \amp 0 \\ 0 \amp 1 \amp -2 \amp 0 \\ 0 \amp 0 \amp 0 \amp 0
\end{array}\right],
\end{equation*}
so
\begin{equation*}
\mathbf{x}_3=\left[\begin{array}{r} -r \\ 2r \\ r \end{array}\right]
=r\left[\begin{array}{r} -1 \\ 2 \\ 1 \end{array}\right],
r\in \R.
\end{equation*}
With the eigenvectors found, let
\begin{equation*}
\mathbf{v}_1=\frac{1}{\sqrt{2}}\left[\begin{array}{r} 1\\ 0\\ 1 \end{array}\right],
\mathbf{v}_2=\frac{1}{\sqrt{3}}\left[\begin{array}{r} -1\\ -1\\ 1 \end{array}\right],
\mathbf{v}_3=\frac{1}{\sqrt{6}}\left[\begin{array}{r} -1\\ 2\\ 1 \end{array}\right]
\end{equation*}
Then
\begin{equation*}
V=\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
\sqrt 3 \amp -\sqrt 2 \amp -1 \\
0 \amp -\sqrt 2 \amp 2 \\
\sqrt 3 \amp \sqrt 2 \amp 1 \end{array}\right].
\end{equation*}
Also,
\begin{equation*}
\Sigma = \left[\begin{array}{rrr} 4 \amp 0 \amp 0 \\
0 \amp \sqrt 6 \amp 0 \end{array}\right]
\end{equation*}
and we use \(A\text{,}\) \(V^T\text{,}\) and \(\Sigma\) to find \(U\text{.}\) Since \(V\) is orthogonal and \(A=U\Sigma V^T\text{,}\) it follows that
\begin{equation*}
AV=U\Sigma.
\end{equation*}
Let \(V=\left[\begin{array}{ccc} \mathbf{v}_1 \amp \mathbf{v}_2 \amp \mathbf{v}_3 \end{array}\right]\text{,}\) and let \(U=\left[\begin{array}{cc} \mathbf{u}_1 \amp \mathbf{u}_2 \end{array}\right]\text{,}\) where \(\mathbf{u}_1\) and \(\mathbf{u}_2\) are the two columns of \(U\text{.}\) Then we have
\begin{align*}
A\left[\begin{array}{ccc} \mathbf{v}_1 \amp \mathbf{v}_2 \amp \mathbf{v}_3 \end{array}\right]
\amp = \left[\begin{array}{cc} \mathbf{u}_1 \amp \mathbf{u}_2 \end{array}\right]\Sigma
\left[\begin{array}{ccc} A\mathbf{v}_1 \amp A\mathbf{v}_2 \amp A\mathbf{v}_3 \end{array}\right] \\
\amp = \left[\begin{array}{ccc} \sigma_1\mathbf{u}_1 + 0\mathbf{u}_2 \amp
0\mathbf{u}_1 + \sigma_2 \mathbf{u}_2 \amp 0 \mathbf{u}_1 + 0\mathbf{u}_2 \end{array}\right] \\
= \left[\begin{array}{ccc} \sigma_1\mathbf{u}_1 \amp \sigma_2 \mathbf{u}_2 \amp
0 \end{array}\right]
\end{align*}
which implies that \(A\mathbf{v}_1=\sigma_1\mathbf{u}_1 = 4\mathbf{u}_1\) and \(A\mathbf{v}_2=\sigma_2\mathbf{u}_2 = \sqrt 6 \mathbf{u}_2\text{.}\) Thus,
\begin{equation*}
\mathbf{u}_1 = \frac{1}{4}A\mathbf{v}_1
= \frac{1}{4}
\left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 3 \amp 1 \amp 1 \end{array}\right]
\frac{1}{\sqrt{2}}\left[\begin{array}{r} 1\\ 0\\ 1 \end{array}\right]
= \frac{1}{4\sqrt 2}\left[\begin{array}{r} 4\\ 4 \end{array}\right]
= \frac{1}{\sqrt 2}\left[\begin{array}{r} 1\\ 1 \end{array}\right]
\end{equation*}
and
\begin{align*}
\mathbf{u}_2 \amp = \frac{1}{\sqrt 6}A\mathbf{v}_2
= \frac{1}{\sqrt 6}
\left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 3 \amp 1 \amp 1 \end{array}\right]
\frac{1}{\sqrt{3}}\left[\begin{array}{r} -1\\ -1\\ 1 \end{array}\right] \\
\amp =\frac{1}{3\sqrt 2}\left[\begin{array}{r} 3\\ -3 \end{array}\right]
=\frac{1}{\sqrt 2}\left[\begin{array}{r} 1\\ -1 \end{array}\right]
\end{align*}
Therefore,
\begin{equation*}
U=\frac{1}{\sqrt{2}}\left[\begin{array}{rr} 1 \amp 1 \\
1 \amp -1 \end{array}\right]
\end{equation*}
and
\begin{align*}
A \amp = \left[\begin{array}{rrr} 1 \amp -1 \amp 3 \\ 3 \amp 1 \amp 1 \end{array}\right] \\
\amp = \left(\frac{1}{\sqrt{2}}\left[\begin{array}{rr} 1 \amp 1 \\
1 \amp -1 \end{array}\right]\right)
\left[\begin{array}{rrr} 4 \amp 0 \amp 0 \\
0 \amp \sqrt 6 \amp 0 \end{array}\right]
\left(\frac{1}{\sqrt{6}}\left[\begin{array}{rrr}
\sqrt 3 \amp 0 \amp \sqrt 3 \\
-\sqrt 2 \amp -\sqrt 2 \amp \sqrt2 \\
-1 \amp 2 \amp 1 \end{array}\right]\right).
\end{align*}