Exploration 2.3.1.
Solve the following system of equations.
\begin{equation*}
\begin{array}{ccccccccc}
x \amp + \amp 2y\amp -\amp 3z\amp = \amp 1 \\
-5x\amp +\amp 2y\amp -\amp 3z\amp =\amp 1\\
x\amp - \amp 2y\amp +\amp z\amp =\amp 1
\end{array}
\end{equation*}
We create an augmented matrix corresponding to the system and apply row operations until the matrix is in row-echelon form.
\begin{equation*}
\left[\begin{array}{ccc|c}
1\amp 2\amp -3\amp 1\\-5\amp 2\amp -3\amp 1\\1\amp -2\amp 1\amp 1
\end{array}\right]
\begin{array}{c}
\\
\xrightarrow{R_2+5R_1}\\
\xrightarrow{R_3-R_1}\\
\end{array}
\left[\begin{array}{ccc|c}
1\amp 2\amp -3\amp 1\\0\amp 12\amp -18\amp 6\\0\amp -4\amp 4\amp 0
\end{array}\right]
\begin{array}{c}
\\
\\
\xrightarrow{R_3+\frac{1}{3}R_2}\\
\end{array}
\end{equation*}
\begin{equation}
\left[\begin{array}{ccc|c}
1\amp 2\amp -3\amp 1\\0\amp 12\amp -18\amp 6\\0\amp 0\amp -2\amp 2
\end{array}\right]\tag{2.3.1}
\end{equation}
Note that the elementary row operations that lead to (2.3.1) were not prescribed. We may employ row-operations in a different manner and obtain a different matrix in row-echelon form. For example, suppose for some reason we had begun by switching the first and third rows.
\begin{equation*}
\left[\begin{array}{ccc|c}
1\amp 2\amp -3\amp 1\\-5\amp 2\amp -3\amp 1\\1\amp -2\amp 1\amp 1
\end{array}\right]
\begin{array}{c}
\\
\xrightarrow{R_1\leftrightarrow R_3}\\
\\
\end{array}
\left[\begin{array}{ccc|c}
1\amp -2\amp 1\amp 1\\-5\amp 2\amp -3\amp 1\\1\amp 2\amp -3\amp 1
\end{array}\right]
\begin{array}{c}
\\
\\
\\
\end{array}
\end{equation*}
Next we would reduce this matrix to row-echelon form, perhaps in this way:
\begin{equation*}
\left[\begin{array}{ccc|c}
1\amp -2\amp 1\amp 1\\-5\amp 2\amp -3\amp 1\\1\amp 2\amp -3\amp 1
\end{array}\right]
\begin{array}{c}
\\
\xrightarrow{R_2+5R_1}\\
\xrightarrow{R_3-R_1}\\
\end{array}
\left[\begin{array}{ccc|c}
1\amp -2\amp 1\amp 1\\0\amp -8\amp 2\amp 6\\0\amp 4\amp -4\amp 0
\end{array}\right]
\begin{array}{c}
\\
\\
\xrightarrow{R_3+\frac{1}{2}R_2}\\
\end{array}
\end{equation*}
\begin{equation}
\left[\begin{array}{ccc|c}
1\amp -2\amp 1\amp 1\\0\amp -8\amp 2\amp 6\\0\amp 0\amp -3\amp 3
\end{array}\right]\tag{2.3.2}
\end{equation}
The augmented matrices in (2.3.1) and (2.3.2) are clearly not the same, but both are in row-echelon form. If we write the systems of equations corresponding to (2.3.1) and (2.3.2), we can employ back substitution to solve them. The matrix in (2.3.1) corresponds to
\begin{equation*}
\begin{array}{ccccccccc}
x \amp + \amp 2y\amp -\amp 3z\amp = \amp 1 \\
\amp \amp 12y\amp -\amp 18z\amp =\amp 6\\
\amp \amp \amp \amp -2z\amp =\amp 2
\end{array}
\end{equation*}
The matrix in (2.3.2) corresponds to
\begin{equation*}
\begin{array}{ccccccccc}
x \amp - \amp 2y\amp +\amp z\amp = \amp 1 \\
\amp \amp -8y\amp +\amp 2z\amp =\amp 6\\
\amp \amp \amp \amp -3z\amp =\amp 3
\end{array}
\end{equation*}
Because both systems are equivalent to the original system, it is not surprising that back substitution yields the same solution for both systems.
\begin{equation*}
x=0,\quad y=-1,\quad z=-1
\end{equation*}
\begin{equation*}
x=0, y=-1, z=-1
\end{equation*}
\begin{equation*}
x=0, y=-1, z=-1
\end{equation*}