Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\dfn}{\textit}
\newcommand{\id}{\text{id}}
\newcommand\norm[1]{\left\lVert#1\right\rVert}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 5 Subspaces of \(\R^n\)
Objectives
Determine whether sets are closed under addition and/or scalar multiplication.
Determine whether a set of vectors is a basis of a subspace or \(\R^n\text{.}\)
Write the coordinates of a vector with respect to a given basis of \(\R^n\text{.}\)
Identify the dimension of the span of a given set of vectors.
Find a basis for each of the following: the row space, the column space, and the null space of a given matrix.
Prove elementary theorems concerning rank of a matrix and the relationship between rank and nullity.