We will start by splitting this region into triangles.
We can find the total area of the polygon by finding the area of each triangle. The area of each triangle is half of the area of the corresponding parallelogram. For instance, \(A_1\) is half of the area of the parallelogram depicted below.
We compute
\begin{equation*}
A_1=\frac{1}{2}\left|\det\begin{bmatrix}2 \amp 1\\0 \amp 2\end{bmatrix}\right |=2,
\end{equation*}
\begin{equation*}
A_2=\frac{1}{2}\left|\det\begin{bmatrix}1 \amp -1\\2 \amp 3\end{bmatrix}\right |=2.5,
\end{equation*}
\begin{equation*}
A_3=\frac{1}{2}\left|\det\begin{bmatrix}-1 \amp -2\\3 \amp 2\end{bmatrix}\right |=2,
\end{equation*}
\begin{equation*}
A_4=\frac{1}{2}\left|\det\begin{bmatrix}-2 \amp -1\\2 \amp -1\end{bmatrix}\right |=2,
\end{equation*}
\begin{equation*}
A_5=\frac{1}{2}\left|\det\begin{bmatrix}-1 \amp 2\\-1 \amp 0\end{bmatrix}\right |=1.
\end{equation*}
The total area of the polygon is \(9.5\text{.}\)