Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\dfn}{\textit}
\newcommand{\id}{\text{id}}
\newcommand\norm[1]{\left\lVert#1\right\rVert}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 3 Big Ideas about Vectors
Objectives
Express vectors as linear combinations of other vectors in \(\mathbb{R}^n \) in both algebraic and geometric settings.
Interpret a system of linear equations as an expression of one vector as a linear combination of other vectors in \(\mathbb{R}^n \text{.}\)
Describe the span of a set of vectors in \(\mathbb{R}^n \text{.}\)
Determine linear independence / dependence of a set of vectors in \(\mathbb{R}^n \text{.}\)