Skip to main content
Logo image

Coordinated Linear Algebra

Section 4.4 The Inverse of a Matrix

Consider the equation 2x=6. It takes little time to recognize that the solution to this equation is x=3. In fact, the solution is so obvious that we do not think about the algebraic steps necessary to find it. Let’s take a look at these steps in detail.
2x=6
12×(2x)=12×6
(12×2)x=3
1x=3
x=3
This process utilizes many properties of real-number multiplication. In particular, we make use of existence of multiplicative inverses. Every non-zero real number a has a multiplicative inverse a1=1a with the property that 1a×a=a×1a=1. We say that 1 is the multiplicative identity because a×1=1×a=a.
Given a matrix equation Ax=b, we would like to follow a process similar to the one above to solve this matrix equation for x.
Observe that the role of the multiplicative identity for n×n square matrices is filled by In because AIn=InA=A. Given an n×n matrix A, a multiplicative inverse of A would have to be some n×n matrix B such that
BA=AB=In
Assuming that such an inverse B exists, this is what the process of solving the equation Ax=b would look like:
Ax=b
B(Ax)=Bb
(BA)x=Bb
Ix=Bb
x=Bb

Definition 4.4.1.

Let A be an n×n matrix. An n×n matrix B is called an inverse of A if
AB=BA=I
where I is an n×n identity matrix. If such an inverse matrix exists, we say that A is invertible. If an inverse does not exist, we say that A is not invertible.
It follows directly from the way the definition is stated that if B is an inverse of A, then A is an inverse of B. We say that A and B are inverses of each other. The following theorem shows that matrix inverses are unique.

Proof.

Because B is an inverse of A, we have:
AB=BA=I.
Suppose there exists another n×n matrix C such that
AC=CA=I.
Then
C(AB)=CI
(CA)B=C
IB=C
B=C.
Now that we know that a matrix A cannot have more than one inverse, we can safely refer to the inverse of A as A1.

Example 4.4.3.

Let
A=[1152]andB=[2/31/35/31/3].
Verify that A and B are inverses of each other.
Answer.
We will show that AB=BA=I.
AB=[1152][2/31/35/31/3]=[2/3+5/31/3+1/310/310/35/32/3]=[1001],
BA=[2/31/35/31/3][1152]=[2/3+5/32/32/35/3+5/35/32/3]=[1001].

Example 4.4.4.

Use what we found in Example 4.4.3 to solve the matrix equation:
[1152]x=[31].
Answer.
We multiply both sides of the equation by the inverse of [1152].
[2/31/35/31/3][1152]x=[2/31/35/31/3][31]
x=[5/314/3].
We now prove several useful properties of matrix inverses.

Proof.

We will prove Item 3. The remaining properties are left as exercises.
[Proof of Item 3:]: We will check to see if B1A1 is the inverse of AB.
(B1A1)(AB)=B1(A1A)B=B1IB=B1B=I
(AB)(B1A1)=A(BB1)A1=AIA1=AA1=I
Thus (AB) is invertible and (AB)1=B1A1.

Subsection 4.4.1 Computing the Inverse

We now turn to the question of how to find the inverse of a square matrix, or determine that the inverse does not exist. Given a square matrix A, we are looking for a square matrix B such that
AB=IandBA=I
We will start by attempting to satisfy AB=I. Let v1,,vn be the columns of B, then
A[|||v1v2vn|||]=[|||e1e2en|||]
where each ei is a standard unit vector of Rn. This gives us a system of equations Avi=ei for each 1in. If each Avi=ei has a unique solution, then finding these solutions will give us the columns of the desired matrix B.
First, suppose that rref(A)=I, then we can use elementary row operations to carry each [A|ei] to its reduced row-echelon form.
[A|ei][I|vi]
Observe that the row operations that carry A to I will be the same for each Avi=ei. We can, therefore, combine the process of solving n systems of equations into a single process
[A|I][I|B]
Each vi is a unique solution of Avi=ei, and we conclude that
B=[|||v1v2vn|||]
is a solution to AB=I. By Exercise 2.1.5.11, we can reverse the elementary row operations to obtain
[I|B][A|I]
But the same row operations would also give us
[B|I][I|A]
We conclude that BA=I, and B=A1.
Next, suppose that rref(A)I. Then rref(A) must contain a row of zeros. Because one of the rows of A was completely wiped out by elementary row operations, one of the rows of A must be a linear combination of the other rows. Suppose row p is a linear combination of the other rows. Then row p can be carried to a row of zeros. But then the system Avp=ep is inconsistent. This is because ep has a 1 as the pth entry and zeros everywhere else. The 1 in the pth spot will not be affected by elementary row operations, and the pth row will eventually look like this
[00|1]
This shows that a matrix B such that AB=I does not exist, and A does not have an inverse. We have just proved the following theorem.
Finding inverses is important. We exhibit two examples of this.

Example 4.4.8.

Find A1 or demonstrate that A1 does not exist.
A=[112111131]
Answer.
We start with the augmented matrix
[112100111010131001]R2R1R3R1
[112100021110043101]R32R2
[112100021110001121](1)R3
[112100021110001121]R12R3R2+R3
[110342020231001121]12R2
[11034201013/21/2001121]R1+R2
[10025/23/201013/21/2001121].
We conclude that
A1=[25/23/213/21/2121].

Example 4.4.9.

Find A1 or demonstrate that A is not invertible.
A=[231021443]
Answer.
We start with the augmented matrix
[231100021010443001]12R112R2
[13/21/21/200011/201/20443001]R34R1
[13/21/21/200011/201/20021201]R3+2R2
[13/21/21/200011/201/20000211].
At this point we see that the left-hand side cannot be turned into I through elementary row operations. We conclude that A1 does not exist.

Remark 4.4.10.

Recall that a square matrix whose reduced row-echelon form is the identity matrix is called nonsingular. ( Definition 4.2.4) According to Corollary 4.4.7, a matrix is invertible if and only if it is nonsingular. For this reason many linear algebra texts use the terms invertible and nonsingular as synonyms.

Subsection 4.4.2 Inverse of a 2×2 Matrix

We will conclude this section by discussing the inverse of a nonsingular 2×2 matrix. Let A=[abcd] be a nonsingular matrix. We can find A1 by using the row reduction method described above, that is, by computing the reduced row-echelon form of [A|I]. Row reduction yields the following:
[ab10cd01][10d/(adbc)b/(adbc)01c/(adbc)a/(adbc)]
Note that the denominator of each term in the inverse matrix is the same. Factoring it out, gives us the following formula for A1.
Clearly, the expression for A1 is defined, if and only if adbc0. So, what happens when adbc=0? In Exercise 4.4.3.9 you will be asked to fill in the steps of the row reduction procedure that produces this formula, and show that if adbc=0 then A does not have an inverse.

Exercises 4.4.3 Exercises

1.

Verify that the matrix [2132] is its own inverse.

2.

Use the row-reduction method for computing matrix inverses to explain why the given matrix does not have an inverse.
[111222333]

3.

Let
A=[112211310]andB=[1/121/61/41/41/21/45/121/61/4]
Are A and B inverses of each other?
Answer.
Yes, A and B are inverses.

7.

In Example 4.4.8 we found the inverse of
A=[112111131]
Use A1 to solve the equation
Ax=[324]
Answer.
x=[17811]

8.

Find the inverse of each matrix by using the row-reduction procedure.
A=[112100123]
Answer.
A1=[010312211]

9.

Use the row-reduction method to prove Formula Formula 4.4.11 for a nonsingular matrix. Show that if adbc=0 then A does not have an inverse.
Hint.
After going through the row reduction, try it again, considering the possibility that a=0.

Exercise Group.

For each matrix below refer to Formula 4.4.11 to find the value of x for which the matrix is not invertible.

14.

Suppose AB=AC and A is an invertible n×n matrix. Does it follow that B=C? Explain why or why not.

15.

Suppose AB=AC and A is a non-invertible n×n matrix. Does it follow that B=C? Explain why or why not.

16.

Give an example of a matrix A such that A2=I and yet AI and AI.

17.

Suppose A is a symmetric, invertible matrix. Does it follow that A1 is symmetric? What if we change ``symmetric" to ``skew symmetric"? (See Definition 4.1.24.)

18.

Suppose A and B are invertible n×n matrices. Does it follow that (A+B) is invertible?