Skip to main content
Logo image

Coordinated Linear Algebra

Section 4.2 Linear Systems as Matrix and Linear Combination Equations

Exploration 4.2.1.

Consider the linear system
\begin{equation*} \begin{array}{ccccccccc} 3x_1 \amp - \amp 2x_2\amp +\amp 4x_3\amp +\amp x_4\amp = \amp 5 \\ -x_1\amp \amp \amp +\amp 5x_3\amp -\amp 2x_4\amp =\amp 1\\ 2x_1\amp +\amp x_2\amp -\amp x_3\amp +\amp 3x_4\amp =\amp -4 \end{array} \end{equation*}
Let’s construct the coefficient matrix \(A\) and multiply it by \(\mathbf{x}=\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}\) on the right:
\begin{equation*} A\mathbf{x}=\begin{bmatrix}3\amp -2\amp 4\amp 1\\-1\amp 0\amp 5\amp -2\\2\amp 1\amp -1\amp 3\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}=\begin{bmatrix}3x_1-2x_2+4x_3+x_4\\-x_1+5x_3-2x_4\\2x_1+x_2-x_3+3x_4\end{bmatrix}. \end{equation*}
Observe that each component of the product vector corresponds to one of the equations in the system. Let \(\mathbf{b}=\begin{bmatrix}5\\1\\-4\end{bmatrix}\text{.}\) Then
\begin{equation*} A\mathbf{x}=\mathbf{b}, \end{equation*}
\begin{equation*} \begin{bmatrix}3\amp -2\amp 4\amp 1\\-1\amp 0\amp 5\amp -2\\2\amp 1\amp -1\amp 3\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}=\begin{bmatrix}5\\1\\-4\end{bmatrix}. \end{equation*}
is a matrix equation that corresponds to our system of equations.
In general, a system of linear equations
\begin{equation*} \begin{array}{ccccccccc} a_{11}x_1 \amp + \amp a_{12}x_2\amp +\amp \ldots\amp +\amp a_{1n}x_n\amp = \amp b_1 \\ a_{21}x_1 \amp + \amp a_{22}x_2\amp +\amp \ldots\amp +\amp a_{2n}x_n\amp = \amp b_2 \\ \amp \amp \amp \amp \vdots\amp \amp \amp \amp \\ a_{m1}x_1 \amp + \amp a_{m2}x_2\amp +\amp \ldots\amp +\amp a_{mn}x_n\amp = \amp b_m \end{array} \end{equation*}
can be written as a matrix equation as follows:
\begin{equation*} \begin{bmatrix} a_{11} \amp a_{12}\amp \dots\amp a_{1n}\\ a_{21}\amp a_{22} \amp \dots \amp a_{2n}\\ \vdots \amp \vdots\amp \ddots \amp \vdots\\ a_{m1}\amp \dots \amp \dots \amp a_{mn} \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1\\ b_2\\ \vdots \\ b_m \end{bmatrix} \end{equation*}
Solving this matrix equation (or showing that a solution does not exist) amounts to finding the reduced row-echelon form of the augmented matrix
\begin{equation*} \left[\begin{array}{cccc|c} a_{11} \amp a_{12}\amp \dots\amp a_{1n}\amp b_1\\ a_{21}\amp a_{22} \amp \dots \amp a_{2n}\amp b_2\\ \vdots \amp \vdots\amp \ddots \amp \vdots\amp \vdots\\ a_{m1}\amp \dots \amp \dots \amp a_{mn}\amp b_m \end{array}\right] \end{equation*}
Being able to use matrices to rewrite and solve systems of equations is crucial, so here are two examples to get you into this mindset.

Example 4.2.1.

Given a linear system
\begin{align*} x\amp +\amp 2y\amp =\amp 0 \\ -x \amp +\amp y\amp = \amp -3 \\ \amp \amp y\amp =\amp -1 \\ x\amp \amp \amp =\amp 2 \end{align*}
  1. Write the system as a matrix equation
  2. Solve the system and the matrix equation
Answer.
The matrix equation Item 1 that corresponds to the system is
\begin{equation*} \begin{bmatrix}1\amp 2\\-1\amp 1\\0\amp 1\\1\amp 0\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}0\\-3\\-1\\2\end{bmatrix} \end{equation*}
The augmented matrix Item 2 that corresponds to the original system and its reduced row-echelon form are
\begin{equation*} \left[\begin{array}{cc|c} 1\amp 2\amp 0\\-1\amp 1\amp -3\\0\amp 1\amp -1\\1\amp 0\amp 2 \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{cc|c} 1\amp 0\amp 2\\0\amp 1\amp -1\\0\amp 0\amp 0\\0\amp 0\amp 0 \end{array}\right] \end{equation*}
This shows that the ordered pair \((2, -1)\) is a solution to the system. We conclude that \(\mathbf{x}=\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}2\\-1\end{bmatrix}\) is a solution to the matrix equation in Item 1. A quick verification confirms this
\begin{equation*} \begin{bmatrix}1\amp 2\\-1\amp 1\\0\amp 1\\1\amp 0\end{bmatrix}\begin{bmatrix}2\\-1\end{bmatrix}=\begin{bmatrix}0\\-3\\-1\\2\end{bmatrix} \end{equation*}

Example 4.2.2.

Let
\begin{equation*} A=\begin{bmatrix}2\amp 1\amp -1\amp 2\\1\amp 1\amp 0\amp 3\end{bmatrix}\quad\text{and}\quad\mathbf{b}=\begin{bmatrix}0\\-2\end{bmatrix} \end{equation*}
Solve \(A\mathbf{x}=\mathbf{b}\text{.}\)
Answer.
We write the equation \(A\mathbf{x}=\mathbf{b}\) in augmented matrix form and apply elementary row operations to find its reduced row-echelon form.
\begin{equation*} \left[\begin{array}{cccc|c} 2\amp 1\amp -1\amp 2\amp 0\\1\amp 1\amp 0\amp 3\amp -2 \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{cccc|c} 1\amp 0\amp -1\amp -1\amp 2\\0\amp 1\amp 1\amp 4\amp -4 \end{array}\right] \end{equation*}
One way to obtain a solution is to convert this to a system of equations. It is not necessary to write the system down, but it helps to think about it as you write out your solution vector.
\begin{align*} \end{align*}
We see that \(x_1\) and \(x_2\) are leading variables because they correspond to leading 1s in the reduced row-echelon form , while \(x_3\) and \(x_4\) are free variables. We start by assigning parameters \(s\) and \(t\) to \(x_3\) and \(x_4\text{,}\) respectively, then solve for \(x_1\) and \(x_2\text{.}\)
\begin{align*} x_1\amp =2+s+t \\ x_2\amp =-4-s-4t \\ x_3\amp =s \\ x_4\amp =t \end{align*}
We can now write the solution vector as follows
\begin{equation} \mathbf{x}=\begin{bmatrix}2+s+t\\-4-s-4t\\s\\t\end{bmatrix}=\begin{bmatrix}2\\-4\\0\\0\end{bmatrix}+\begin{bmatrix}1\\-1\\1\\0\end{bmatrix}s+\begin{bmatrix}1\\-4\\0\\1\end{bmatrix}t\tag{4.2.1} \end{equation}
The solution given in (4.2.1) is an example of a general solution because it accounts for all of the solutions to the system. Letting \(s\) and \(t\) take on specific values produces particular solutions. For example, \([2\\-1\\1\\-1]\) is a particular solution that corresponds to \(s=1\text{,}\) \(t=-1\text{.}\)

Subsection 4.2.1 Singular and Nonsingular Matrices

Our examples so far involved non-square matrices. Square matrices, however, play a very important role in linear algebra. This section will focus on square matrices. We start the paragraph with an example to motivate.

Example 4.2.3.

Let
\begin{equation*} A=\begin{bmatrix}3\amp -1\amp 1\\0\amp 1\amp 2\\1\amp 2\amp 2\end{bmatrix}\quad\text{and}\quad\mathbf{b}=\begin{bmatrix}2\\1\\0\end{bmatrix}. \end{equation*}
Solve \(A\mathbf{x}=\mathbf{b}\text{.}\)
Answer.
We apply elementary row operations to bring the augmented matrix to its reduced row-echelon form.
\begin{equation*} \left[\begin{array}{ccc|c} 3\amp -1\amp 1\amp 2\\0\amp 1\amp 2\amp 1\\1\amp 2\amp 2\amp 0 \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{ccc|c} 1\amp 0\amp 0\amp 0\\0\amp 1\amp 0\amp -1\\0\amp 0\amp 1\amp 1 \end{array}\right]. \end{equation*}
We can immediately see that the solution vector is
\begin{equation*} \mathbf{x}=\begin{bmatrix}0\\-1\\1\end{bmatrix}. \end{equation*}
Observe that the left-hand side of the augmented matrix in Example 4.2.3 is the identity matrix \(I\text{.}\) This means that \(\mbox{rref}(A)=I\text{.}\)
The elementary row operations that carried \(A\) to \(I\) were not dependent on the vector \(\mathbf{b}\text{.}\) In fact, the same row reduction process can be applied to the matrix equation \(A\mathbf{x}=\mathbf{b}\) for any vector \(\mathbf{b}\) to obtain a unique solution.
\begin{equation*} \left[\begin{array}{ccc|c} 3\amp -1\amp 1\amp a\\0\amp 1\amp 2\amp b\\1\amp 2\amp 2\amp c \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{ccc|c} 1\amp 0\amp 0\amp a^*\\0\amp 1\amp 0\amp b^*\\0\amp 0\amp 1\amp c^* \end{array}\right] \end{equation*}
\begin{equation*} \mathbf{x}=\begin{bmatrix}a^*\\b^*\\c^*\end{bmatrix} \end{equation*}
Given a matrix \(A\) such that \(\mbox{rref}(A)=I\text{,}\) the system \(A\mathbf{x}=\mathbf{b}\) will never be inconsistent because we will never have a row like this: \(\left[\begin{array}{cccc|c} 0\amp 0\amp \ldots\amp 0\amp 1 \end{array}\right]\text{.}\) Neither will we have infinitely many solutions because there will never be free variables. Matrices such as \(A\) deserve special attention.

Definition 4.2.4.

A square matrix \(A\) is said to be nonsingular provided that \(\mbox{rref}(A)=I\text{.}\) Otherwise we say that \(A\) is singular.
Non-singular matrices have many useful properties.

Proof.

We will prove equivalence of the three statements by showing that Item 1\(\Rightarrow\)Item 2\(\Rightarrow\)Item 3\(\Rightarrow\)Item 1
[Proof of Item 1\(\Rightarrow\)Item 2]: Suppose \(\mbox{rref}(A)=I\text{.}\) Given any vector \(\mathbf{b}\) in \(\R^n\text{,}\) the augmented matrix \([A|\mathbf{b}]\) can be carried to its reduced row-echelon form \([I|\mathbf{b}^*]\text{.}\) Uniqueness of the reduced row-echelon form guarantees that \(\mathbf{b}^*\) is the unique solution of \(A\mathbf{x}=\mathbf{b}\text{.}\)
[Proof of Item 2\(\Rightarrow\)Item 3]: Suppose \(A\mathbf{x}=\mathbf{b}\) has a unique solution for all vectors \(\mathbf{b}\text{.}\) Then \(A\mathbf{x}=\mathbf{0}\) has a unique solution. But \(\mathbf{x}=\mathbf{0}\) is always a solution to \(A\mathbf{x}=\mathbf{0}\text{.}\) Therefore \(\mathbf{x}=\mathbf{0}\) is the only solution.
[Proof of Item 3\(\Rightarrow\)Item 1]: Suppose \(A\mathbf{x}=\mathbf{0}\) has only the trivial solution. This means that \(x_1=0, x_2=0,\dots ,x_n=0\) is the only solution of \(A\mathbf{x}=\mathbf{0}\text{.}\) But then, we know that the augmented matrix \([A|\mathbf{0}]\) can be reduced to \([I|\mathbf{0}]\text{.}\) The same row operations will carry \(A\) to \(I\text{.}\)

Remark 4.2.6.

Not all square matrices are nonsingular. For example,
\begin{equation*} \mbox{rref}\left(\begin{bmatrix}2\amp -1\amp 1\\1\amp 1\amp 1\\3\amp 0\amp 2\end{bmatrix}\right)=\begin{bmatrix}1\amp 0\amp 2/3\\0\amp 1\amp 1/3\\0\amp 0\amp 0\end{bmatrix}\neq I \end{equation*}
By Theorem 4.2.5, a matrix equation \(A\mathbf{x}=\mathbf{b}\) involving a singular matrix \(A\) cannot have a unique solution. The following example illustrates the two scenarios that arise when solving equations that involve singular matrices.

Example 4.2.7.

Let
\begin{equation*} A=\begin{bmatrix}2\amp -1\amp 1\\1\amp 1\amp 1\\3\amp 0\amp 2\end{bmatrix} \end{equation*}
Solve the equation \(A\mathbf{x}=\mathbf{b}\) for each case of \(b\) below or show that hte system is inconsistent.
  1. \begin{equation*} \mathbf{b}_1=\begin{bmatrix}4\\-1\\3\end{bmatrix} \end{equation*}
  2. \begin{equation*} \mathbf{b}_2=\begin{bmatrix}1\\-1\\1\end{bmatrix} \end{equation*}
Answer.
For \(b_1 \text{,}\) row reduction gives us
\begin{equation*} \left[\begin{array}{ccc|c} 2\amp -1\amp 1\amp 4\\1\amp 1\amp 1\amp -1\\3\amp 0\amp 2\amp 3 \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{ccc|c} 1\amp 0\amp 2/3\amp 1\\0\amp 1\amp 1/3\amp -2\\0\amp 0\amp 0\amp 0 \end{array}\right]. \end{equation*}
There are infinitely many solutions and they all have the following form:
\begin{equation*} \mathbf{x}=\begin{bmatrix}1-(2/3)t\\-2-(1/3)t\\t\end{bmatrix}=\begin{bmatrix}1\\-2\\0\end{bmatrix}+\begin{bmatrix}-2/3\\-1/3\\1\end{bmatrix}t. \end{equation*}
For \(b_2\text{,}\) the vector \(\mathbf{b}\) is changed and the row operations that take \(A\) to its reduced row-echelon form produce a \(1\) in the last row of the vector on the right, which shows that the system is inconsistent.
\begin{equation*} \left[\begin{array}{ccc|c} 2\amp -1\amp 1\amp 1\\1\amp 1\amp 1\amp -1\\3\amp 0\amp 2\amp 1 \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{ccc|c} 1\amp 0\amp 2/3\amp 0\\0\amp 1\amp 1/3\amp 0\\0\amp 0\amp 0\amp 1 \end{array}\right]. \end{equation*}

Subsection 4.2.2 A Linear System as a Linear Combination Equation

Recall that the product of a matrix and a vector can be interpreted as a linear combination of the columns of the matrix. For example,
\begin{equation*} \begin{bmatrix}1\amp 2\amp 3\amp 4\\5\amp 6\amp 7\amp 8\end{bmatrix}\begin{bmatrix}x_1\\x_2\\x_3\\x_4\end{bmatrix}=x_1\begin{bmatrix}1\\5\end{bmatrix}+x_2\begin{bmatrix}2\\6\end{bmatrix}+x_3\begin{bmatrix}3\\7\end{bmatrix}+x_4\begin{bmatrix}4\\8\end{bmatrix}. \end{equation*}

Example 4.2.8.

For each given matrix \(A\) and vector \(\mathbf{b}\text{,}\) determine whether \(\mathbf{b}\) is a linear combination of the columns of \(A\text{.}\) If possible, express \(\mathbf{b}\) as a linear combination of the columns of \(A\text{.}\)
  1. \begin{equation*} A=\begin{bmatrix} 3\amp 1\amp -2\\ 1\amp 0\amp 3\\ -2\amp 1\amp 1 \end{bmatrix},\,\,\,\mathbf{b}=\begin{bmatrix} -2\\7\\-1\end{bmatrix}. \end{equation*}
  2. \begin{equation*} B=\begin{bmatrix} 1\amp -1\amp 3\\ 2\amp -1\amp 1\\ 0\amp 1\amp -5 \end{bmatrix},\,\,\,\mathbf{b}=\begin{bmatrix} 4\\-1\\2\end{bmatrix}. \end{equation*}
Answer.
For \(A\text{,}\) we are looking for \(x_1, x_2, x_3\) such that
\begin{equation*} x_1\begin{bmatrix}3\\1\\-2\end{bmatrix}+x_2\begin{bmatrix}1\\0\\1\end{bmatrix}+x_3\begin{bmatrix}-2\\3\\1\end{bmatrix}=\begin{bmatrix}-2\\7\\-1\end{bmatrix}. \end{equation*}
Solving this equation amounts to finding \(\mathbf{x}=\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\) such that \(A\mathbf{x}=\mathbf{b}\text{.}\) The augmented matrix corresponding to this equation, together with its reduced row-echelon form are
\begin{equation*} \left[\begin{array}{ccc|c} 3\amp 1\amp -2\amp -2\\1\amp 0\amp 3\amp 7\\-2\amp 1\amp 1\amp -1 \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{ccc|c} 1\amp 0\amp 0\amp 1\\0\amp 1\amp 0\amp -1\\0\amp 0\amp 1\amp 2 \end{array}\right]. \end{equation*}
So, \(\mathbf{x}=\begin{bmatrix} 1\\-1\\2\end{bmatrix}\) is a solution to the matrix equation. We conclude that \(\mathbf{b}\) is a linear combination of the columns of \(A\text{,}\) and write
\begin{equation*} \mathbf{b}=\begin{bmatrix} -2\\7\\-1\end{bmatrix}=\begin{bmatrix} 3\\1\\-2\end{bmatrix}-\begin{bmatrix} 1\\0\\1\end{bmatrix}+2\begin{bmatrix} -2\\3\\1\end{bmatrix}. \end{equation*}
For \(B\) We begin by attempting to solve the matrix equation \(A\mathbf{x}=\mathbf{b}\text{.}\) The augmented matrix corresponding to this equation, together with its reduced row-echelon form are
\begin{equation*} \left[\begin{array}{ccc|c} 1\amp -1\amp 3\amp 4\\2\amp -1\amp 1\amp -1\\0\amp 1\amp -5\amp 2 \end{array}\right]\begin{array}{c} \\ \rightsquigarrow\\ \\ \end{array}\left[\begin{array}{ccc|c} 1\amp 0\amp -2\amp 0\\0\amp 1\amp -5\amp 0\\0\amp 0\amp 0\amp 1 \end{array}\right]. \end{equation*}
This shows that this matrix equation has no solutions. We conclude that \(\mathbf{b}\) is not a linear combination of the columns of \(A\text{.}\)

Exercises 4.2.3 Exercises

1.

Given the system of linear equations below, write (a) the corresponding matrix equation, and (b) the corresponding linear combination equation. DO NOT SOLVE.
\begin{align*} 3x\amp - \amp y \amp - \amp 2z\amp = \amp 4 \\ -x\amp \amp \amp + \amp z\amp = \amp -1 \\ \amp \amp -y \amp + \amp 5z\amp =\amp 0 \end{align*}

Exercise Group.

Use an augmented matrix and elementary row operations to find coefficients \(x_1\) and \(x_2\) that make the expression true, or demonstrate that such coefficients do not exist.
2.
\begin{equation*} x_1\begin{bmatrix} 1\\ -2 \end{bmatrix}+ x_2\begin{bmatrix} 1\\ 3 \end{bmatrix}=\begin{bmatrix} 1\\ 8 \end{bmatrix}. \end{equation*}
Answer.
\begin{equation*} x_1=-1, x_2=2. \end{equation*}
3.
\begin{equation*} x_1\begin{bmatrix} 4\\ -1 \end{bmatrix}+ x_2\begin{bmatrix} -8\\ 2 \end{bmatrix}=\begin{bmatrix} 0\\ 3 \end{bmatrix}. \end{equation*}
Answer.
The system is inconsistent and no \(x_1, x_2\) exist.

Exercise Group.

In each problem below determine whether vector \(\mathbf{b}\) is in the span of the given set of vectors.
4.
\(\mathbf{b}=\begin{bmatrix}2\\14\\7\end{bmatrix}\) and \(\left\{\begin{bmatrix}2\\-1\\1\end{bmatrix}, \begin{bmatrix}-3\\4\\1\end{bmatrix}, \begin{bmatrix}1\\-3\\-2\end{bmatrix}\right\}.\)
Answer.
The vector \(b\) is not in the span.
5.
\(\mathbf{b}=\begin{bmatrix}5\\2\\4\end{bmatrix}\) and \(\left\{\begin{bmatrix}4\\2\\4\end{bmatrix}, \begin{bmatrix}4\\5\\1\end{bmatrix}, \begin{bmatrix}3\\2\\2\end{bmatrix}, \begin{bmatrix}1\\0\\2\end{bmatrix}\right\}.\)
Answer.
The vector \(b\) is in the span.
6.
\(\mathbf{b}=\begin{bmatrix}2\\4\\-7\\-5\end{bmatrix}\) and \(\left\{\begin{bmatrix}1\\-1\\2\\3\end{bmatrix}, \begin{bmatrix}4\\1\\-3\\1\end{bmatrix}\right\}.\)
Answer.
The vector \(b\) is not in the span.