Let \(\mathbf{r}_1,\ldots ,\mathbf{r}_m\) be the rows of \(A\text{.}\) There are three elementary row operations. Clearly, switching the order of vectors in \(\mbox{span}(\mathbf{r}_1,\ldots ,\mathbf{r}_m)\) will not affect the span. Suppose that \(B\) was obtained from \(A\) by multiplying the \(i^{th}\) row of \(A\) by a non-zero constant \(k\text{.}\) We need to show that
\begin{equation*}
\mbox{span}(\mathbf{r}_1,\ldots ,k\mathbf{r}_i,\ldots ,\mathbf{r}_m)=\mbox{span}(\mathbf{r}_1,\ldots ,\mathbf{r}_i,\ldots ,\mathbf{r}_m)
\end{equation*}
To do this we will assume that some vector \(\mathbf{v}\) is in
\begin{equation*}
\mbox{span}(\mathbf{r}_1,\ldots ,k\mathbf{r}_i,\ldots ,\mathbf{r}_m)
\end{equation*}
and show that \(\mathbf{v}\) is in \(\mbox{span}(\mathbf{r}_1,\ldots ,\mathbf{r}_i,\ldots ,\mathbf{r}_m)\text{.}\) We will then assume that some vector \(\mathbf{w}\) is in
\begin{equation*}
\mbox{span}(\mathbf{r}_1,\ldots ,\mathbf{r}_i,\ldots ,\mathbf{r}_m)
\end{equation*}
and show that \(\mathbf{w}\) must be in \(\mbox{span}(\mathbf{r}_1,\ldots ,k\mathbf{r}_i,\ldots ,\mathbf{r}_m)\text{.}\)
Suppose that \(\mathbf{v}\) is in \(\mbox{span}(\mathbf{r}_1,\ldots ,k\mathbf{r}_i,\ldots ,\mathbf{r}_m)\text{.}\) Then
\begin{equation*}
\mathbf{v}=a_1\mathbf{r}_1+\ldots +a_i(k\mathbf{r}_i)+\ldots +a_m\mathbf{r}_m
\end{equation*}
But this implies
\begin{equation*}
\mathbf{v}=a_1\mathbf{r}_1+\ldots +(a_ik)\mathbf{r}_i+\ldots +a_m\mathbf{r}_m.
\end{equation*}
So \(\mathbf{v}\) is in \(\mbox{span}(\mathbf{r}_1,\ldots ,\mathbf{r}_i,\ldots ,\mathbf{r}_m)\text{.}\)
Now suppose \(\mathbf{w}\) is in \(\mbox{span}(\mathbf{r}_1,\ldots ,\mathbf{r}_i,\ldots ,\mathbf{r}_m)\text{,}\) then
\begin{equation*}
\mathbf{w}=b_1\mathbf{r}_1+\ldots +b_i\mathbf{r}_i+\ldots +b_m\mathbf{r}_m.
\end{equation*}
But because \(k\neq 0\text{,}\) we can do the following:
\begin{equation*}
\mathbf{w}=b_1\mathbf{r}_1+\ldots +\frac{b_i}{k}(k\mathbf{r}_i)+\ldots +b_m\mathbf{r}_m.
\end{equation*}
Therefore, \(\mathbf{w}\) is in \(\mbox{span}(\mathbf{r}_1,\ldots ,k\mathbf{r}_i,\ldots ,\mathbf{r}_m)\text{.}\)
We leave it to the reader to verify that adding a multiple of one row of
\(A\) to another does not change the row space. See also
Exercise 5.3.5.17.)