For this proof we will need to think of matrices in terms of their columns. Thus,
\begin{equation*}
A=\begin{bmatrix}
| \amp |\amp \amp |\\
\mathbf{a}_1 \amp \mathbf{a}_2\amp \dots\amp \mathbf{a}_n\\
| \amp |\amp \amp |
\end{bmatrix}.
\end{equation*}
We will also need the identity matrix \(I\text{.}\) The columns of \(I\) are standard unit vectors.
\begin{equation*}
I=\begin{bmatrix}
| \amp |\amp \amp |\\
\mathbf{e}_1 \amp \mathbf{e}_2\amp \dots\amp \mathbf{e}_n\\
| \amp |\amp \amp |
\end{bmatrix}.
\end{equation*}
Recall that
\begin{equation*}
A_i(\mathbf{b})=\begin{bmatrix}
| \amp |\amp \amp |\amp |\amp |\amp \amp |\\
\mathbf{a}_1 \amp \mathbf{a}_2\amp \dots \amp \mathbf{a}_{i-1}\amp \mathbf{b}\amp \mathbf{a}_{i+1}\amp \dots\amp \mathbf{a}_n\\
| \amp |\amp \amp |\amp |\amp |\amp \amp |
\end{bmatrix}.
\end{equation*}
Similarly,
\begin{equation*}
I_i(\mathbf{x})=\begin{bmatrix}
| \amp |\amp \amp |\amp |\amp |\amp \amp |\\
\mathbf{e}_1 \amp \mathbf{e}_2\amp \dots \amp \mathbf{e}_{i-1}\amp \mathbf{x}\amp \mathbf{e}_{i+1}\amp \dots\amp \mathbf{e}_n\\
| \amp |\amp \amp |\amp |\amp |\amp \amp |
\end{bmatrix}.
\end{equation*}
Observe that \(x_i\) is the only non-zero entry in the \(i^{th}\) row of \(I_i(\mathbf{x})\text{.}\) Cofactor expansion along the \(i^{th}\) row gives us
\begin{equation}
\det{I_i(\mathbf{x})}=x_i.\tag{7.3.2}
\end{equation}
Now, consider the product \(A\Big(I_i(\mathbf{x})\Big)\)
\begin{align*}
A\Big(I_i(\mathbf{x})\Big)\amp =\begin{bmatrix}
| \amp |\amp \amp |\\
\mathbf{a}_1 \amp \mathbf{a}_2\amp \dots\amp \mathbf{a}_n\\
| \amp |\amp \amp |
\end{bmatrix}\begin{bmatrix}
| \amp |\amp \amp |\amp |\amp |\amp \amp |\\
\mathbf{e}_1 \amp \dots \amp \mathbf{e}_{i-1}\amp \mathbf{x}\amp \mathbf{e}_{i+1}\amp \dots\amp \mathbf{e}_n\\
| \amp |\amp \amp |\amp |\amp |\amp \amp |
\end{bmatrix} \\
\amp =\begin{bmatrix}
| \amp |\amp \amp |\amp |\amp |\amp \amp |\\
\mathbf{a}_1 \amp \mathbf{a}_2\amp \dots \amp \mathbf{a}_{i-1}\amp A\mathbf{x}\amp \mathbf{a}_{i+1}\amp \dots\amp \mathbf{a}_n\\
| \amp |\amp \amp |\amp |\amp |\amp \amp |
\end{bmatrix} \\
\amp =\begin{bmatrix}
| \amp |\amp \amp |\amp |\amp |\amp \amp |\\
\mathbf{a}_1 \amp \mathbf{a}_2\amp \dots \amp \mathbf{a}_{i-1}\amp \mathbf{b}\amp \mathbf{a}_{i+1}\amp \dots\amp \mathbf{a}_n\\
| \amp |\amp \amp |\amp |\amp |\amp \amp |
\end{bmatrix}=A_i(\mathbf{b}).
\end{align*}
This gives us
\begin{equation*}
AI_i(\mathbf{x})=A_i(\mathbf{b}),
\end{equation*}
\begin{equation*}
\det{AI_i(\mathbf{x})}=\det{A_i(\mathbf{b})},
\end{equation*}
\begin{equation*}
\det{A}\det{I_i(\mathbf{x})}=\det{A_i(\mathbf{b})}.
\end{equation*}
By our earlier observation in
(7.3.2), we have
\begin{equation*}
\det{A}x_i=\det{A_i(\mathbf{b})}.
\end{equation*}
\(A\) is nonsingular, so \(\det{A}\neq 0\text{.}\) Thus
\begin{equation*}
x_i=\frac{\det{A_i(\mathbf{b})}}{\det{A}}.
\end{equation*}