Let \(\mathbf{v}_{1}\text{,}\) \(\mathbf{v}_{2}\text{,}\) \(\mathbf{v}_{3}\) denote the rows of \(A\) and observe that \(\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\}\) is linearly independent. Take \(\mathbf{f}_{1} = \mathbf{v}_{1}\text{.}\) The algorithm gives
\begin{align*}
\mathbf{f}_{2} \amp = \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \cdot \mathbf{f}_{1}}{\norm{\mathbf{f}_{1}}^2}\mathbf{f}_{1} = [3, 2, 0, 1] - \frac{4}{4}[1, 1, -1, -1] = [2, 1, 1, 2] \\
\mathbf{f}_{3} \amp = \mathbf{v}_{3} - \frac{\mathbf{v}_{3} \cdot \mathbf{f}_{1}}{\norm{\mathbf{f}_{1}}^2}\mathbf{f}_{1} - \frac{\mathbf{v}_{3} \cdot \mathbf{f}_{2}}{\norm{\mathbf{f}_{2}}^2}\mathbf{f}_{2} = \mathbf{v}_{3} - \frac{3}{10}\mathbf{f}_{2} = \frac{1}{10}[4, -3, 7, -6].
\end{align*}
Hence
\begin{equation*}
\{[1, 1, -1, -1], [2, 1, 1, 2], \frac{1}{10}[4, -3, 7, -6]\}
\end{equation*}
is the orthogonal basis provided by the algorithm. In hand calculations it may be convenient to eliminate fractions (see the Remark below), so
\begin{equation*}
\{[1, 1, -1, -1], [2, 1, 1, 2], [4, -3, 7, -6]\}
\end{equation*}
is also an orthogonal basis for \(\mbox{row}(A)\text{.}\)