Exploration 3.2.1.
Consider the following collection of vectors:
\begin{equation*}
\left\{\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right\}.
\end{equation*}
Problem 3.2.1.
What is the span of these vectors?
- A line.
- All of \(\mathbb{R}^2\text{.}\)
- A parallelogram.
- A parallelipiped.
Answer.
Option b: All of \(\mathbb{R}^2\)
In this Exploration we will examine what can happen to the span of a collection of vectors when a vector is removed from the collection.
First, let’s remove \([2,1]\) from
\begin{equation*}
\left\{\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right\}.
\end{equation*}
Problem 3.2.2.
Which of the following is true?
- \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}\right)=\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right)\text{.}\)
- \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}\right)\) is a line.
- \(\displaystyle \mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}\right)=\R^2\)
- \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}\right)\) is a parallelogram.
Answer.
Option b: \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}\right)\) is a line.
Problem 3.2.3.
Removing \([2,1]\) from
\begin{equation*}
\left\{\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right\}
\end{equation*}
does what?
- It changes the span.
- It does not change the span.
Answer.
Option a: It does change the span.
Now let’s remove \([-4,2]\) from the original collection of vectors.
Problem 3.2.4.
Which of the following is true?
- \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix} 2\\1\end{bmatrix}\right)\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right)\text{.}\)
- \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right)\) is a line.
- \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right)\) is the right side of the coordinate plane.
- \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right)\) is a parallelogram.
Answer.
Option a: \(\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix} 2\\1\end{bmatrix}\right)\mbox{span}\left(\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right)\text{.}\)
Problem 3.2.5.
Removing \([-4,2]\) from
\begin{equation*}
\left\{\begin{bmatrix}2\\-1\end{bmatrix}, \begin{bmatrix}-4\\2\end{bmatrix}, \begin{bmatrix}2\\1\end{bmatrix}\right\}
\end{equation*}
does what?
- It changes the span.
- It does not change the span.
Answer.
Option b: It does change the span.