By
Theorem 6.2.33,
\(\mbox{im}(T)\) is a subspace of
\(W\text{.}\) There exists a basis for
\(\mbox{im}(T)\) of the form
\(\{T(\mathbf{v}_1), \ldots,T(\mathbf{v}_r)\}\text{.}\) By
Theorem 6.2.38,
\(\mbox{ker}(T)\) is a subspace of
\(V\text{.}\) Let
\(\{\mathbf{u}_1,\ldots,\mathbf{u}_s\}\) be a basis for
\(\mbox{ker}(T)\text{.}\) We will show that
\(\{\mathbf{u}_1,\ldots ,\mathbf{u}_s, \mathbf{v}_1,\ldots ,\mathbf{v}_r\}\) is a basis for
\(V\text{.}\) For any vector
\(\mathbf{v}\) in
\(V\text{,}\) we have:
\begin{equation*}
T(\mathbf{v})=c_1T(\mathbf{v}_1)+\ldots +c_rT(\mathbf{v}_r)
\end{equation*}
for some scalars \(c_i\) \((1\leq i\leq r)\text{.}\) Thus,
\begin{equation*}
T(\mathbf{v})-\big(c_1T(\mathbf{v}_1)+\ldots +c_rT(\mathbf{v}_r)\big)=\mathbf{0}.
\end{equation*}
By linearity,
\begin{equation*}
T((\mathbf{v}-(c_1\mathbf{v}_1+\ldots +c_r\mathbf{v}_r))=\mathbf{0}.
\end{equation*}
Therefore \(\mathbf{v}-(c_1\mathbf{v}_1+\ldots +c_r\mathbf{v}_r)\) is in \(\mbox{ker}(T)\text{.}\) Hence there are scalars \(a_i\) \((1\leq i\leq s)\) such that
\begin{equation*}
\mathbf{v}-(c_1\mathbf{v}_1+\ldots +c_r\mathbf{v}_r)=a_1\mathbf{u}_1+\ldots +a_s\mathbf{u}_s.
\end{equation*}
Thus,
\begin{equation*}
\mathbf{v}=(c_1\mathbf{v}_1+\ldots +c_r\mathbf{v}_r)+(a_1\mathbf{u}_1+\ldots +a_s\mathbf{u}_s).
\end{equation*}
We conclude that
\begin{equation*}
V=\mbox{span}(\mathbf{u}_1,\ldots ,\mathbf{u}_s, \mathbf{v}_1,\ldots ,\mathbf{v}_r).
\end{equation*}
Now we need to show that \(\{\mathbf{u}_1,\ldots ,\mathbf{u}_s, \mathbf{v}_1,\ldots ,\mathbf{v}_r\}\) is linearly independent. Suppose
\begin{equation}
c_1\mathbf{v}_1+\ldots +c_r\mathbf{v}_r+a_1\mathbf{u}_1+\ldots +a_s\mathbf{u}_s=\mathbf{0}.\tag{6.2.7}
\end{equation}
Applying \(T\) to both sides, we get
\begin{equation*}
T(c_1\mathbf{v}_1+\ldots +c_r\mathbf{v}_r+a_1\mathbf{u}_1+\ldots +a_s\mathbf{u}_s)=T(\mathbf{0}),
\end{equation*}
\begin{equation*}
c_1T(\mathbf{v}_1)+\ldots +c_rT(\mathbf{v}_r)+a_1T(\mathbf{u}_1)+\ldots +a_sT(\mathbf{u}_s)=\mathbf{0}.
\end{equation*}
But \(T(\mathbf{u}_i)=\mathbf{0}\) for \(1\leq i\leq s\text{,}\) thus
\begin{equation*}
c_1T(\mathbf{v}_1)+\ldots +c_rT(\mathbf{v}_r)=\mathbf{0}.
\end{equation*}
Since
\(\{T(\mathbf{v}_1),\ldots ,T(\mathbf{v}_r)\}\) is linearly independent, it follows that each
\(c_i=0\text{.}\) But then
(6.2.7) implies that
\(a_1\mathbf{u}_1+\ldots +a_s\mathbf{u}_s=\mathbf{0}\text{.}\) Because
\(\{\mathbf{u}_1, \ldots ,\mathbf{u}_s\}\) is linearly independent, it follows that each
\(a_i=0\text{.}\) We conclude that
\(\{\mathbf{u}_1,\ldots ,\mathbf{u}_s,\mathbf{v}_1,\ldots ,\mathbf{v}_r\}\) is a basis for
\(V\text{.}\) Thus,
\begin{equation*}
\mbox{dim}(\mbox{ker}(T))+\mbox{dim}(\mbox{im}(T))=s+r=n.
\end{equation*}