If
\(A\) is orthogonally diagonalizable, then it is an easy exercise to prove that it is symmetric. You are asked to do this in
Exercise 10.4.3.1.
To prove the ``only if’’ part of this theorem, we assume \(A\) is symmetric, and we need to show it is orthogonally diagonalizable.
We proceed by induction on \(n\text{,}\) the size of the symmetric matrix. If \(n = 1\text{,}\) \(A\) is already diagonal. If \(n \gt 1\text{,}\) assume that we know the ``only if’’ statement holds for \((n - 1) \times (n - 1)\) symmetric matrices. Let \(\lambda_{1}\) be an eigenvalue of \(A\text{,}\) and let \(A\mathbf{x}_{1} = \lambda_{1}\mathbf{x}_{1}\text{,}\) where \(\norm{\mathbf{x}_{1}} = 1\text{.}\) Next, set \(\mathbf{q}_{1}=\mathbf{x}_{1}\text{,}\) and use the Gram-Schmidt algorithm to find an orthonormal basis \(\{\mathbf{q}_{1}, \mathbf{q}_{2}, \dots, \mathbf{q}_{n}\}\) for \(\R^n\text{.}\) Let
\begin{equation*}
Q_{1} = \begin{bmatrix}
| \amp | \amp \amp | \\
\mathbf{q}_1 \amp \mathbf{q}_2 \amp \cdots \amp \mathbf{q}_n \\
| \amp | \amp \amp |
\end{bmatrix},
\end{equation*}
so that \(Q_{1}\) is an orthogonal matrix. We have
\begin{align*}
Q_{1}^TAQ_{1} \amp = \begin{bmatrix}
-- \amp \mathbf{q}_{1}^T \amp -- \\ -- \amp \mathbf{q}_{2}^T \amp -- \\ \amp \vdots \amp \\ -- \amp \mathbf{q}_{n}^T \amp --
\end{bmatrix} A \begin{bmatrix}
| \amp | \amp \amp | \\
\mathbf{q}_1 \amp \mathbf{q}_2 \amp \cdots \amp \mathbf{q}_n \\
| \amp | \amp \amp |
\end{bmatrix} \\
\amp = \begin{bmatrix}
-- \amp \mathbf{q}_{1}^T \amp -- \\ -- \amp \mathbf{q}_{2}^T \amp -- \\ \amp \vdots \amp \\ -- \amp \mathbf{q}_{n}^T \amp --
\end{bmatrix} \begin{bmatrix}
| \amp | \amp \amp | \\
A\mathbf{q}_1 \amp A\mathbf{q}_2 \amp \cdots \amp A\mathbf{q}_n \\
| \amp | \amp \amp |
\end{bmatrix} \\
\amp =
\begin{bmatrix}
\lambda_{1} \amp B \\
\mathbf{0} \amp A_{1}
\end{bmatrix},
\end{align*}
where the block \(B\) has dimensions \(1 \times (n-1)\text{,}\) and the block under \(\lambda_1\) is a \((n-1) \times 1\) zero matrix, because of the orthogonality of the basis.
Next, using the fact that \(A\) is symmetric, we notice that
\begin{equation*}
(Q_{1}^TAQ_{1})^T = Q_{1}^T A^T (Q_{1}^T)^T = Q_{1}^TAQ_{1},
\end{equation*}
so \(Q_{1}^TAQ_{1}\) is symmetric. It follows that \(B\) is also a zero matrix and that \(A_{1}\) is symmetric. Since \(A_{1}\) is an \((n - 1) \times (n - 1)\) symmetric matrix, we may apply the inductive hypothesis, so there exists an \((n - 1) \times (n - 1)\) orthogonal matrix \(Q\) such that \(Q^{T}A_{1}Q = D_{1}\) is diagonal. We observe that
\begin{equation*}
Q_{2} = \begin{bmatrix}
1 \amp 0\\
0 \amp Q
\end{bmatrix}
\end{equation*}
is orthogonal, and we compute:
\begin{align*}
(Q_{1}Q_{2})^TA(Q_{1}Q_{2}) \amp = Q_{2}^T(Q_{1}^TAQ_{1})Q_{2} \\
\amp = \begin{bmatrix}
1 \amp 0 \\
0 \amp Q^T
\end{bmatrix} \begin{bmatrix}
\lambda_{1} \amp 0 \\
0 \amp A_{1}
\end{bmatrix}\begin{bmatrix}
1 \amp 0 \\
0 \amp Q
\end{bmatrix} \\
\amp = \begin{bmatrix}
\lambda_{1} \amp 0 \\
0 \amp D_{1}
\end{bmatrix}
\end{align*}
is diagonal. Because
\(Q_{1}Q_{2}\) is orthogonal by
Theorem 10.4.6Item 1, this completes the proof.