Definition 6.3.1.
Let \(U\text{,}\) \(V\) and \(W\) be vector spaces, and let \(T:U\rightarrow V\) and \(S:V\rightarrow W\) be linear transformations. The composition of \(S\) and \(T\) is the transformation \(S\circ T:U\rightarrow W\) given by
\begin{equation*}
(S\circ T)(\mathbf{u})=S(T(\mathbf{u})).
\end{equation*}