Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\dfn}{\textit}
\newcommand{\id}{\text{id}}
\newcommand\norm[1]{\left\lVert#1\right\rVert}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 8 Eigenvalues and Eigenvectors
Objectives
Define eigenvalues and eigenvectors geometrically.
Use characteristic polynomials to compute eigenvalues and eigenvectors.
Define algebraic multiplicity and geometric multiplicity.
Utilize properties to show that two matrices are not similar.
Use eigenvectors of matrices, when possible, to diagonalize a matrix.
Implement the Power Method and its variants.