Exploration 6.1.1.
Make your own shape by moving points \(A, B, C, D, E, F, G\) in the left pane. (You can also move the entire figure by clicking and dragging the whole polygon.) The images of the points and the polygon under the transformation induced by \(M\) are shown on the right.
Try each of the following matrices to determine what each transformation accomplishes. (Type pi into GeoGebra to get \(\pi\text{.}\))
\begin{equation*}
M_1=\begin{bmatrix}1\amp 0\\0\amp 2\end{bmatrix},\quad M_2=\begin{bmatrix}1/2\amp 0\\0\amp 1\end{bmatrix},\quad M_3=\begin{bmatrix}1\amp 2\\0\amp 1\end{bmatrix},
\end{equation*}
\begin{equation*}
M_4=\begin{bmatrix}\cos(\pi)\amp -\sin(\pi)\\\sin(\pi)\amp \cos(\pi)\end{bmatrix},\quad M_5=\begin{bmatrix}\cos\left(\pi/4\right)\amp -\sin\left(\pi/4\right)\\\sin\left(\pi/4\right)\amp \cos\left(\pi/4\right)\end{bmatrix},
\end{equation*}
\begin{equation*}
M_6=\begin{bmatrix}1\amp 0\\0\amp -1\end{bmatrix},\quad M_7=\begin{bmatrix}0\amp 1\\1\amp 0\end{bmatrix},\quad M_8=\begin{bmatrix}1\amp 1\\1\amp 1\end{bmatrix}.
\end{equation*}
Problem 6.1.2.
Match the description of each transformation described below with a the matrix \(M_1, M_2, \ldots , M_8 \) that induces it.
- Horizontal shear.
- Rotation by \(45^{\circ}\) counterclockwise.
- Reflection about the \(x\)-axis.
- Vertical Stretch.
- Maps everything to a straight line.
- Rotation through a \(180^{\circ}\) angle.
- Horizontal compression.
- Reflection about the line \(y=x\text{.}\)
Answer.
- \(\displaystyle M_3 \)
- \(\displaystyle M_5 \)
- \(\displaystyle M_6 \)
- \(\displaystyle M_1 \)
- \(\displaystyle M_8 \)
- \(\displaystyle M_4 \)
- \(\displaystyle M_2 \)
- \(\displaystyle M_7 \)