Suppose that every \(\mathbf{v}\) in \(V\) can be expressed as a unique linear combination of \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\text{.}\) This means that \(\mathbf{0}\) has a unique representation as a linear combination of \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\text{.}\) But
\begin{equation*}
\mathbf{0}=0\mathbf{w}_1+0\mathbf{w}_2+\ldots+0\mathbf{w}_p
\end{equation*}
is a representation of \(\mathbf{0}\) in terms of \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\text{.}\) Since we are assuming that such a representation is unique, we conclude that there is no other. This means that the vectors \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\) are linearly independent. Conversely, suppose that vectors \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\) are linearly independent. An arbitrary element \(\mathbf{v}\) of \(V\) can be expressed as a linear combination of \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\text{:}\)
\begin{equation*}
\mathbf{v}=a_1\mathbf{w}_1+a_2\mathbf{w}_2+\ldots+a_p\mathbf{w}_p.
\end{equation*}
Suppose this representation is not unique. Then there may be another linear combination that is also equal to \(\mathbf{v}\text{:}\)
\begin{equation*}
\mathbf{v}=b_1\mathbf{w}_1+b_2\mathbf{w}_2+\ldots+b_p\mathbf{w}_p.
\end{equation*}
But then
\begin{equation*}
a_1\mathbf{w}_1+a_2\mathbf{w}_2+\ldots+a_p\mathbf{w}_p=b_1\mathbf{w}_1+b_2\mathbf{w}_2+\ldots+b_p\mathbf{w}_p.
\end{equation*}
This gives us
\begin{equation*}
(a_1-b_1)\mathbf{w}_1+(a_2-b_2)\mathbf{w}_2+\ldots+(a_p-b_p)\mathbf{w}_p=\mathbf{0}.
\end{equation*}
Because we assumed that \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\) are linearly independent, we must have
\begin{equation*}
a_1-b_1=0,\, a_2-b_2=0,\,\ldots ,\,a_p-b_p=0,
\end{equation*}
so that
\begin{equation*}
a_1=b_1,\, a_2=b_2,\,\ldots ,\,a_p=b_p.
\end{equation*}
This proves the representation of \(\mathbf{v}\) in terms of \(\mathbf{w}_1, \mathbf{w}_2,\ldots,\mathbf{w}_p\) is unique.