Exploration 2.2.1.
The linear system in this Exploration comes from Jim Hefferon’s Linear Algebra.
1
joshua.smcvt.edu/linearalgebra/#current_version
Consider the linear system
\begin{equation}
\begin{array}{ccccccccc}
x \amp - \amp y\amp \amp \amp \amp \amp = \amp 0 \\
2x\amp -\amp 2y\amp +\amp z\amp +\amp 2w\amp =\amp 4\\
\amp \amp y\amp \amp \amp +\amp w\amp =\amp 0\\
\amp \amp \amp \amp 2z\amp +\amp w\amp =\amp 5
\end{array}\tag{2.2.1}
\end{equation}
Our goal is to use elementary row operations to transform this system into an equivalent system of the form
\begin{equation*}
\begin{array}{ccccccccc}
x \amp \amp \amp \amp \amp \amp \amp = \amp a \\
\amp \amp y\amp \amp \amp \amp \amp =\amp b\\
\amp \amp \amp \amp z\amp \amp \amp =\amp c\\
\amp \amp \amp \amp \amp \amp w\amp =\amp d
\end{array}
\end{equation*}
We have to keep in mind that given an arbitrary system, an equivalent system of this form may not exist (we will talk a lot more about this later). However, it does exist in this case, and we would like to find a more efficient way of getting to it than having to write and rewrite our equations at each step.
Answer.
We start by subtracting twice row 1 from row 2. (\(R_2-2R_1\rightarrow R_2\))
\begin{equation*}
\begin{matrix}
x \amp - \amp y\amp +\amp 0z\amp +\amp 0w\amp = \amp 0 \\
0x\amp +\amp 0y\amp +\amp 1z\amp +\amp 2w\amp =\amp 4\\
0x\amp +\amp y\amp +\amp 0z\amp +\amp w\amp =\amp 0\\
0x\amp +\amp 0y\amp +\amp 2z\amp +\amp w\amp =\amp 5
\end{matrix}
\end{equation*}
Next, we add row 3 to row 1. (\(R_1+R_3\rightarrow R_1\))
\begin{equation*}
\begin{matrix}
x \amp + \amp 0 y\amp +\amp 0 z\amp +\amp 1 w\amp = \amp 0 \\
0x\amp +\amp 0y\amp +\amp z\amp +\amp 2w\amp =\amp 4\\
0x\amp +\amp y\amp +\amp 0z\amp +\amp w\amp =\amp 0\\
0x\amp +\amp 0y\amp +\amp 2z\amp +\amp w\amp =\amp 5
\end{matrix}
\end{equation*}
Subtract twice row 2 from row 4. (\(R_4-2R_2\rightarrow R_4\))
\begin{equation*}
\begin{matrix}
x \amp + \amp 0y\amp +\amp 0z\amp +\amp 1w\amp = \amp 0 \\
0x\amp +\amp 0y\amp +\amp z\amp +\amp 2w\amp =\amp 4\\
0x\amp +\amp y\amp +\amp 0z\amp +\amp w\amp =\amp 0\\
0x\amp +\amp 0y\amp +\amp 0z\amp +\amp -3w\amp =\amp -3
\end{matrix}
\end{equation*}
Divide row 4 by \(-3\text{.}\) (\(-\frac{1}{3}R_4\))
\begin{equation*}
\begin{matrix}
x \amp + \amp 0y\amp +\amp 0z\amp +\amp 1w\amp = \amp 0 \\
0x\amp +\amp 0y\amp +\amp z\amp +\amp 2w\amp =\amp 4\\
0x\amp +\amp y\amp +\amp 0z\amp +\amp w\amp =\amp 0\\
0x\amp +\amp 0y\amp +\amp 0z\amp +\amp 1w\amp =\amp 1
\end{matrix}
\end{equation*}
We will do three operations in one step.
\begin{equation*}
R_1-R_4\rightarrow R_1
\end{equation*}
\begin{equation*}
R_2-2R_4\rightarrow R_2
\end{equation*}
\begin{equation*}
R_3-R_4\rightarrow R_3
\end{equation*}
\begin{equation*}
\begin{matrix}
x \amp + \amp 0y\amp +\amp 0z\amp +\amp 0w\amp = \amp -1 \\
0x\amp +\amp 0y\amp +\amp 1z\amp +\amp 0w\amp =\amp 2\\
0x\amp +\amp 1y\amp +\amp 0z\amp +\amp 0w\amp =\amp -1\\
0x\amp +\amp 0y\amp +\amp 0z\amp +\amp 1w\amp =\amp 1
\end{matrix}
\end{equation*}
We now exchange rows 2 and 3. (\(R_2\leftrightarrow R_3\))
\begin{equation}
\begin{array}{ccccccccc}
x \amp + \amp 0y\amp +\amp 0z\amp +\amp 0w\amp = \amp -1 \\
0x\amp +\amp y\amp +\amp 0z\amp +\amp 0w\amp =\amp -1\\
0x\amp +\amp 0y\amp +\amp z\amp +\amp 0w\amp =\amp 2\\
0x\amp +\amp 0y\amp +\amp 0z\amp +\amp w\amp =\amp 1
\end{array}\tag{2.2.2}
\end{equation}
If we drop all of the zero terms, we have:
\begin{equation}
\begin{array}{ccccccccc}
x \amp \amp \amp \amp \amp \amp \amp = \amp -1 \\
\amp \amp y\amp \amp \amp \amp \amp =\amp -1\\
\amp \amp \amp \amp z\amp \amp \amp =\amp 2\\
\amp \amp \amp \amp \amp \amp w\amp =\amp 1
\end{array}\tag{2.2.3}
\end{equation}
Now we see that \((-1, -1, 2, 1)\) is the solution.
Observe that throughout the entire process, variables \(x\text{,}\) \(y\text{,}\) \(z\) and \(w\) remained in place; only the coefficients in front of the variables and the entries on the right changed. Let’s try to recreate this process without writing down the variables. We can capture the original system in (2.2.1) as follows:
\begin{equation*}
\left[\begin{array}{cccc|c}
1\amp -1\amp 0\amp 0\amp 0\\2\amp -2\amp 1\amp 2\amp 4\\0\amp 1\amp 0\amp 1\amp 0\\0\amp 0\amp 2\amp 1\amp 5
\end{array}\right]
\end{equation*}
The side to the left of the vertical bar is called the coefficient matrix, while the side to the right of the bar is a vector that consists of constants on the right side of the system. The coefficient matrix, together with the vector, is called an augmented matrix.
We can capture all of the elementary row operations we performed earlier as follows:
\begin{equation*}
\left[\begin{array}{cccc|c}
1\amp -1\amp 0\amp 0\amp 0\\2\amp -2\amp 1\amp 2\amp 4\\0\amp 1\amp 0\amp 1\amp 0\\0\amp 0\amp 2\amp 1\amp 5
\end{array}\right]
\begin{array}{c}
\\
\xrightarrow{R_2-2R_1}\\
\\
\\
\end{array}
\left[\begin{array}{cccc|c}
1\amp -1\amp 0\amp 0\amp 0\\0\amp 0\amp 1\amp 2\amp 4\\0\amp 1\amp 0\amp 1\amp 0\\0\amp 0\amp 2\amp 1\amp 5
\end{array}\right]
\begin{array}{c}
\xrightarrow{R_1+R_3}\\
\\
\\
\\
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{cccc|c}
1\amp 0\amp 0\amp 1\amp 0\\2\amp -2\amp 1\amp 2\amp 4\\0\amp 1\amp 0\amp 1\amp 0\\0\amp 0\amp 2\amp 1\amp 5
\end{array}\right]
\begin{array}{c}
\\
\\
\\
\xrightarrow{R_4-2R_2}\\
\end{array}
\left[\begin{array}{cccc|c}
1\amp 0\amp 0\amp 1\amp 0\\0\amp 0\amp 1\amp 2\amp 4\\0\amp 1\amp 0\amp 1\amp 0\\0\amp 0\amp 0\amp -3\amp -3
\end{array}\right]
\begin{array}{c}
\\
\\
\\
\xrightarrow{(-1/3)R_4}\\
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{cccc|c}
1\amp 0\amp 0\amp 1\amp 0\\0\amp 0\amp 1\amp 2\amp 4\\0\amp 1\amp 0\amp 1\amp 0\\0\amp 0\amp 0\amp 1\amp 1
\end{array}\right]
\begin{array}{c}
\xrightarrow{R_1-R_4}\\
\xrightarrow{R_2-2R_4}\\
\xrightarrow{R_3-R_4}\\
\\
\end{array}\left[\begin{array}{cccc|c}
1\amp 0\amp 0\amp 0\amp -1\\0\amp 0\amp 1\amp 0\amp 2\\0\amp 1\amp 0\amp 0\amp -1\\0\amp 0\amp 0\amp 1\amp 1
\end{array}\right]\begin{array}{c}
\\
\xrightarrow{R_2\leftrightarrow R_3}\\
\\
\\
\end{array}
\end{equation*}
\begin{equation}
\left[\begin{array}{cccc|c}
1\amp 0\amp 0\amp 0\amp -1\\0\amp 1\amp 0\amp 0\amp -1\\0\amp 0\amp 1\amp 0\amp 2\\0\amp 0\amp 0\amp 1\amp 1
\end{array}\right]\tag{2.2.4}
\end{equation}