Skip to main content\(\newcommand{\N}{\mathbb N}
\newcommand{\Z}{\mathbb Z}
\newcommand{\Q}{\mathbb Q}
\newcommand{\R}{\mathbb R}
\newcommand{\C}{\mathbb C}
\newcommand{\dfn}{\textit}
\newcommand{\id}{\text{id}}
\newcommand\norm[1]{\left\lVert#1\right\rVert}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 10 Orthogonality
Objectives
Discuss orthogonal and orthonormal bases, Gram-Schmidt orthogonalization, orthogonal complements and projections.
Explain how orthogonal projections relate to least square approximations.
Discuss general inner product spaces and symmetric matrices, and associated norms.
Discuss the singular value decomposition of a matrix.