We start with the augmented matrix
\begin{equation*}
\left[\begin{array}{ccc|ccc}
1\amp -1\amp 2\amp 1\amp 0\amp 0\\1\amp 1\amp 1\amp 0\amp 1\amp 0\\1\amp 3\amp -1\amp 0\amp 0\amp 1
\end{array}\right]
\begin{array}{c}
\\
\xrightarrow{R_2-R_1}\\
\xrightarrow{R_3-R_1}
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{ccc|ccc}
1\amp -1\amp 2\amp 1\amp 0\amp 0\\0\amp 2\amp -1\amp -1\amp 1\amp 0\\0\amp 4\amp -3\amp -1\amp 0\amp 1
\end{array}\right]
\begin{array}{c}
\\
\\
\xrightarrow{R_3-2R_2}
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{ccc|ccc}
1\amp -1\amp 2\amp 1\amp 0\amp 0\\0\amp 2\amp -1\amp -1\amp 1\amp 0\\0\amp 0\amp -1\amp 1\amp -2\amp 1
\end{array}\right]
\begin{array}{c}
\\
\\
\xrightarrow{(-1)R_3}
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{ccc|ccc}
1\amp -1\amp 2\amp 1\amp 0\amp 0\\0\amp 2\amp -1\amp -1\amp 1\amp 0\\0\amp 0\amp 1\amp -1\amp 2\amp -1
\end{array}\right]
\begin{array}{c}
\xrightarrow{R_1-2R_3}\\
\xrightarrow{R_2+R_3}\\
\\
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{ccc|ccc}
1\amp -1\amp 0\amp 3\amp -4\amp 2\\0\amp 2\amp 0\amp -2\amp 3\amp -1\\0\amp 0\amp 1\amp -1\amp 2\amp -1
\end{array}\right]
\begin{array}{c}
\\
\xrightarrow{\frac{1}{2}R_2}\\
\\
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{ccc|ccc}
1\amp -1\amp 0\amp 3\amp -4\amp 2\\0\amp 1\amp 0\amp -1\amp 3/2\amp -1/2\\0\amp 0\amp 1\amp -1\amp 2\amp -1
\end{array}\right]
\begin{array}{c}
\xrightarrow{R_1+R_2}\\
\\
\\
\end{array}
\end{equation*}
\begin{equation*}
\left[\begin{array}{ccc|ccc}
1\amp 0\amp 0\amp 2\amp -5/2\amp 3/2\\0\amp 1\amp 0\amp -1\amp 3/2\amp -1/2\\0\amp 0\amp 1\amp -1\amp 2\amp -1
\end{array}\right].
\end{equation*}
We conclude that
\begin{equation*}
A^{-1}=\begin{bmatrix}2\amp -5/2\amp 3/2\\-1\amp 3/2\amp -1/2\\-1\amp 2\amp -1\end{bmatrix}.
\end{equation*}