Let
\begin{equation*}
A=\begin{bmatrix}2\amp -1\amp 3\amp 2\\0\amp 3\amp -2\amp 1\\-2\amp 4\amp 1\amp 0\end{bmatrix}\quad\text{and}\quad \mathbf{x}=\begin{bmatrix}3\\-1\\4\\1\end{bmatrix}.
\end{equation*}
The matrix-vector product \(A\mathbf{x}\) is a linear combination of the columns of \(A\) with coefficients given by the entries in \(x\text{.}\) For this example,
\begin{align*}
A\mathbf{x} \amp =\begin{bmatrix}\color{red}2\amp \color{blue}-1\amp \color{brown}3\amp 2\\ \color{red}0\amp \color{blue}3\amp \color{brown}-2\amp 1\\ \color{red}-2\amp \color{blue}4\amp \color{brown}1\amp 0\end{bmatrix}\begin{bmatrix}\color{red}3\\ \color{blue}-1\\ \color{brown}4\\1\end{bmatrix} \\
= \color{red}3\begin{bmatrix}\color{red}2\\ \color{red}0\\ \color{red}-2\end{bmatrix}\color{black}+
\color{blue}(-1)\begin{bmatrix}\color{blue}-1\\ \color{blue}3\\ \color{blue}4\end{bmatrix}
\color{black}+\color{brown}4\begin{bmatrix}\color{brown}3\\ \color{brown}-2\\ \color{brown}1\end{bmatrix}
\color{black}+\begin{bmatrix}2\\1\\0\end{bmatrix} \\
=\begin{bmatrix}21\\-10 \\ -6\end{bmatrix}.
\end{align*}
We can also compute the product one entry at a time. First, let’s focus on the first row of \(A\text{.}\)
\begin{align*}
\amp \begin{bmatrix}{\color{red}2}\amp {\color{blue}-1}\amp {\color{brown}3}\amp 2\\0\amp 3\amp -2\amp 1\\-2\amp 4\amp 1\amp 0\end{bmatrix}\begin{bmatrix}{\color{red}3}\\{\color{blue}-1}\\{\color{brown}4}\\1\end{bmatrix} \\
\amp= \begin{bmatrix}{\color{red}(2)( 3)}+{\color{blue}(-1)(-1)}+{\color{brown}(3)(4)}+(2)(1)\\ \\ \\\end{bmatrix}=\begin{bmatrix}21\\ \\ \\\end{bmatrix}.
\end{align*}
Next, let’s look a the second row of \(A\text{.}\)
\begin{align*}
\amp \begin{bmatrix}2\amp -1\amp 3\amp 2\\{\color{red}0}\amp {\color{blue}3}\amp {\color{brown}-2}\amp 1\\-2\amp 4\amp 1\amp 0\end{bmatrix}\begin{bmatrix}{\color{red}3}\\{\color{blue}-1}\\{\color{brown}4}\\1\end{bmatrix}=\begin{bmatrix}21\\{\color{red}(0)( 3)}+{\color{blue}(3)(-1)}+{\color{brown}(-2)(4)}+(1)(1)\\ \\ \end{bmatrix} \\
\amp =\begin{bmatrix}21\\-10 \\ \\\end{bmatrix}.
\end{align*}
Finally, let’s do the third row of \(A\text{.}\)
\begin{align*}
\amp \begin{bmatrix}2\amp -1\amp 3\amp 2\\0\amp 3\amp -2\amp 1\\{\color{red}-2}\amp {\color{blue}4}\amp {\color{brown}1}\amp 0\end{bmatrix}\begin{bmatrix}{\color{red}3}\\{\color{blue}-1}\\{\color{brown}4}\\1\end{bmatrix}=\begin{bmatrix}21\\-10\\{\color{red}(-2)( 3)}+{\color{blue}(4)(-1)}+{\color{brown}(1)(4)}+(0)(1) \end{bmatrix} \\
\amp =\begin{bmatrix}21\\-10 \\ -6\end{bmatrix}.
\end{align*}

