Exploration 5.2.1.
Let
\begin{equation*}
A=\begin{bmatrix}3\amp -1\amp -1\\3\amp 1\amp -2\\-1\amp 4\amp 2\end{bmatrix}.
\end{equation*}
Problem 5.2.1.
Find \(\det{A}\text{.}\)
Answer.
\begin{equation*}
\det{A}=21.
\end{equation*}
Construct matrix \(B\) by switching the first and the third rows of \(A\text{.}\)
\begin{equation*}
B=\begin{bmatrix}-1\amp 4\amp 2\\3\amp 1\amp -2\\3\amp -1\amp -1\end{bmatrix}.
\end{equation*}
Problem 5.2.2.
Find \(\det{B}\text{.}\)
Answer.
\begin{equation*}
\det{B}=-21
\end{equation*}
Next, try switching consecutive rows. Construct matrix \(B'\) by interchanging the second and third rows of \(A\text{.}\)
\begin{equation*}
B'=\begin{bmatrix}3\amp -1\amp -1\\-1\amp 4\amp 2\\3\amp 1\amp -2\end{bmatrix}.
\end{equation*}
Problem 5.2.3.
Find \(\det{B'}\text{.}\)
Answer.
\begin{equation*}
\det{B'}=-21.
\end{equation*}
It appears that switching any two rows of a matrix produces a determinant that is negative of the determinant of the original matrix. Next, construct matrix \(C\) by multiplying the last row of \(A\) by \(k\text{:}\)
\begin{equation*}
C=\begin{bmatrix}3\amp -1\amp -1\\3\amp 1\amp -2\\-k\amp 4k\amp 2k\end{bmatrix}.
\end{equation*}
Problem 5.2.4.
Find \(\det{C}\text{.}\)
Answer.
\begin{equation*}
\det{C}=21k.
\end{equation*}
It turns out that multiplying the first or the second row of \(A\) by \(k\) yields exactly the same result as this. Finally, construct matrix \(D\) by adding twice row 3 to row 1.
\begin{equation*}
D=\begin{bmatrix}1\amp 7\amp 3\\3\amp 1\amp -2\\-1\amp 4\amp 2\end{bmatrix}.
\end{equation*}
Problem 5.2.5.
Find \(\det{D}\text{.}\)
Answer.
\begin{equation*}
\det{D}=21.
\end{equation*}
This result is particularly surprising. Try a few more variations of this example to convince yourself that adding a multiple of one row to another row does not appear to affect the determinant.

