One of the many virtues of orthogonal matrices is that they can be easily inverted---the transpose is the inverse. This fact, combined with the factorization theorem in this section, provides a way to simplify many matrix calculations.
The importance of the factorization lies in the fact that there are computer algorithms that accomplish it with good control over round-off error, making it particularly useful in matrix calculations.
The factorization is a matrix version of the Gram-Schmidt process. Suppose
\begin{equation*}
A = \left[ \begin{array}{cccc}
|\amp |\amp \amp | \\
\mathbf{c}_{1} \amp \mathbf{c}_{2} \amp \cdots \amp \mathbf{c}_{n}\\
|\amp |\amp \amp |
\end{array}\right]
\end{equation*}
is an \(m \times n\) matrix with linearly independent columns \(\mathbf{c}_{1}, \mathbf{c}_{2}, \dots, \mathbf{c}_{n}\text{.}\) The Gram-Schmidt algorithm can be applied to these columns to provide orthogonal columns \(\mathbf{f}_{1}, \mathbf{f}_{2}, \dots, \mathbf{f}_{n}\) where \(\mathbf{f}_{1} = \mathbf{c}_{1}\) and
\begin{equation*}
\mathbf{f}_{k} = \mathbf{c}_{k} - \frac{\mathbf{c}_{k} \cdot \mathbf{f}_{1}}{\norm{ \mathbf{f}_{1} }^2}\mathbf{f}_{1} + \frac{\mathbf{c}_{k} \cdot \mathbf{f}_{2}}{\norm{ \mathbf{f}_{2} }^2}\mathbf{f}_{2} - \dots - \frac{\mathbf{c}_{k} \cdot \mathbf{f}_{k-1}}{\norm{ \mathbf{f}_{k-1} }^2}\mathbf{f}_{k-1}
\end{equation*}
for each \(k = 2, 3, \dots, n\text{.}\) Now write \(\mathbf{q}_{k} = \frac{1}{\norm{ \mathbf{f}_{k} }}\mathbf{f}_{k}\) for each \(k\text{.}\) Then \(\mathbf{q}_{1}, \mathbf{q}_{2}, \dots, \mathbf{q}_{n}\) are orthonormal columns, and the above equation becomes
\begin{equation*}
\norm{ \mathbf{f}_{k} } \mathbf{q}_{k} = \mathbf{c}_{k} - (\mathbf{c}_{k} \cdot \mathbf{q}_{1})\mathbf{q}_{1} - (\mathbf{c}_{k} \cdot \mathbf{q}_{2})\mathbf{q}_{2} - \dots - (\mathbf{c}_{k} \cdot \mathbf{q}_{k-1})\mathbf{q}_{k-1}.
\end{equation*}
Using these equations, express each \(\mathbf{c}_{k}\) as a linear combination of the \(\mathbf{q}_{i}\text{:}\)
\begin{equation*}
\begin{array}{ccl}
\mathbf{c}_{1} \amp =\amp \norm{ \mathbf{f}_{1} } \mathbf{q}_{1} \\
\mathbf{c}_{2} \amp =\amp (\mathbf{c}_{2} \cdot \mathbf{q}_{1})\mathbf{q}_{1} + \norm{ \mathbf{f}_{2} } \mathbf{q}_{2} \\
\mathbf{c}_{3} \amp =\amp (\mathbf{c}_{3} \cdot \mathbf{q}_{1})\mathbf{q}_{1} + (\mathbf{c}_{3} \cdot \mathbf{q}_{2})\mathbf{q}_{2} + \norm{ \mathbf{f}_{3} } \mathbf{q}_{3} \\
\vdots \amp \amp \vdots \\
\mathbf{c}_{n} \amp =\amp (\mathbf{c}_{n} \cdot \mathbf{q}_{1})\mathbf{q}_{1} + (\mathbf{c}_{n} \cdot \mathbf{q}_{2})\mathbf{q}_{2} + (\mathbf{c}_{n} \cdot \mathbf{q}_{3})\mathbf{q}_{3} + \dots + \norm{ \mathbf{f}_{n} } \mathbf{q}_{n}
\end{array}
\end{equation*}
These equations have a matrix form that gives the required factorization:
\begin{align}
A \amp = \left[ \begin{array}{ccccc}
|\amp |\amp |\amp \amp | \\
\mathbf{c}_{1} \amp \mathbf{c}_{2} \amp \mathbf{c}_{3} \amp \cdots \amp \mathbf{c}_{n}\\
|\amp |\amp |\amp \amp |
\end{array}\right] \tag{7.6.1}\\
\amp = \left[ \begin{array}{ccccc}
|\amp |\amp |\amp \amp | \\
\mathbf{q}_{1} \amp \mathbf{q}_{2} \amp \mathbf{q}_{3} \amp \cdots \amp \mathbf{q}_{n}\\
|\amp |\amp |\amp \amp |
\end{array}\right] \left[ \begin{array}{ccccc}
\norm{ \mathbf{f}_{1} } \amp \mathbf{c}_{2} \cdot \mathbf{q}_{1} \amp \mathbf{c}_{3} \cdot \mathbf{q}_{1} \amp \cdots \amp \mathbf{c}_{n} \cdot \mathbf{q}_{1} \\
0 \amp \norm{ \mathbf{f}_{2} } \amp \mathbf{c}_{3} \cdot \mathbf{q}_{2} \amp \cdots \amp \mathbf{c}_{n} \cdot \mathbf{q}_{2} \\
0 \amp 0 \amp \norm{ \mathbf{f}_{3} } \amp \cdots \amp \mathbf{c}_{n} \cdot \mathbf{q}_{3} \\
\vdots \amp \vdots \amp \vdots \amp \ddots \amp \vdots \\
0 \amp 0 \amp 0 \amp \cdots \amp \norm{ \mathbf{f}_{n} }
\end{array} \right]. \notag
\end{align}
\begin{equation*}
Q = \left[ \begin{array}{ccccc}
|\amp |\amp |\amp \amp | \\
\mathbf{q}_{1} \amp \mathbf{q}_{2} \amp \mathbf{q}_{3} \amp \cdots \amp \mathbf{q}_{n}\\
|\amp |\amp |\amp \amp |
\end{array}\right]
\end{equation*}
has orthonormal columns, and the second factor is an \(n \times n\) upper triangular matrix \(R\) with positive diagonal entries (and so is invertible). We record this in the following theorem.
We now take the time to prove the uniqueness of the QR-factorization.