Skip to main content
Logo image

Coordinated Linear Algebra

Section 2.6 Linear Transformations

Recall, from the previous section, that transformation is another word for functions. In this section, we study transformations \(T:\R^n\to\R^m \text{.}\)

Subsection 2.6.1 Understanding Linearity

Exploration 2.6.1.

In this exercise we will introduce a very special type of transformation by contrasting the effects of two transformations on vectors of \(\R^2\text{.}\) We will see that some transformations have ``nice" properties, while others do not. Define \(T_1\) and \(T_2\) as follows:
\begin{equation*} T_1:\R^2\rightarrow\R^2; \quad T_1\left(\begin{bmatrix} x\\ y \end{bmatrix}\right)=\begin{bmatrix} x-y\\ x \end{bmatrix}, \end{equation*}
\begin{equation*} T_2:\R^2\rightarrow\R^2; \quad T_2\left(\begin{bmatrix} x\\ y \end{bmatrix}\right)=\begin{bmatrix} -x+y+1\\ y-2 \end{bmatrix}. \end{equation*}
Each of these transformations takes a vector in \(\R^2\text{,}\) and maps it to another vector in \(\R^2\text{.}\) To see if you understand how these transformations are defined, see if you can determine what these transformations do to the vector \([4,3]\text{.}\)
Problem 2.6.1.
Compute the following two images:
\begin{equation*} T_1\left(\begin{bmatrix} 4\\ 3 \end{bmatrix}\right) \quad \text{and} \quad T_2\left(\begin{bmatrix} 4\\ 3 \end{bmatrix}\right) \end{equation*}
Answer.
\begin{equation*} T_1\left(\begin{bmatrix} 4\\ 3 \end{bmatrix}\right)=\begin{bmatrix} 1\\ 4 \end{bmatrix} \quad \text{and} \quad T_2\left(\begin{bmatrix} 4\\ 3 \end{bmatrix}\right)=\begin{bmatrix} 0\\ 1\end{bmatrix}. \end{equation*}
Now, let’s take the vector \([4,3]\) and multiply it by a scalar, say \(7\text{.}\)
\begin{equation*} 7\begin{bmatrix} 4\\ 3 \end{bmatrix} = \begin{bmatrix} 28\\ 21 \end{bmatrix}. \end{equation*}
Now let’s compare how \(T_1\) and \(T_2\) ``handle" this product. Starting with \(T_1\text{,}\) we compute:
\begin{equation*} T_1\left(7\begin{bmatrix} 4\\ 3 \end{bmatrix}\right)=T_1\left(\begin{bmatrix} 28\\ 21 \end{bmatrix}\right)=\begin{bmatrix} 7\\ 28 \end{bmatrix}. \end{equation*}
Observe that multiplying the original vector by \(7\text{,}\) then applying \(T_1\text{,}\) has the same effect as applying \(T_1\) to the original vector, then multiplying the image by \(7\text{.}\) In other words,
\begin{equation*} T_1\left(7\begin{bmatrix} 4\\ 3 \end{bmatrix}\right)=\begin{bmatrix} 7\\ 28 \end{bmatrix}=7\begin{bmatrix} 1\\ 4 \end{bmatrix}=7T_1\left(\begin{bmatrix} 4\\ 3 \end{bmatrix}\right). \end{equation*}
Diagrammatically, this can be represented as follows.
T with domain and codomain pictured
In this diagram, the vectical arrows are the operation of scalar multiplication by \(7\) and the horizontal arrows are the operation of applying the linear transformation \(T\text{.}\) What the diagram tells us is, whether we multiply by \(7\) and then apply \(T\) or we apply \(T\) and then multiply by \(7\text{,}\) either way gives us the same output.
You should verify that this property does not hold for transformation \(T_2\text{.}\) In other words,
\begin{equation*} T_2\left(7\begin{bmatrix} 4\\ 3 \end{bmatrix}\right)\neq 7T_2\left(\begin{bmatrix} 4\\ 3 \end{bmatrix}\right). \end{equation*}
There is nothing special about the number \(7\text{,}\) and it is not hard to prove that for any scalar \(k\) and vector \(\mathbf{u}\) of \(\R^2\text{,}\) \(T_1\) satisfies
\begin{equation} kT_1(\mathbf{u})= T_1(k\mathbf{u}).\tag{2.6.1} \end{equation}
It turns out that \(T_1\) satisfies another important property. For all vectors \(\mathbf{u}\) and \(\mathbf{v}\) of \(\R^2\) we have:
\begin{equation} T_1(\mathbf{u}+\mathbf{v}) = T_1(\mathbf{u})+T_1(\mathbf{v})\tag{2.6.2} \end{equation}
We leave it to the reader to illustrate this property with a specific example (see Exercise 2.6.4.1). We will show that \(T_1\) satisfies (2.6.2) in general. Let
\begin{equation*} \mathbf{u}=\begin{bmatrix} u_1\\ u_2 \end{bmatrix} \quad \text{and } \mathbf{v}=\begin{bmatrix} v_1\\ v_2 \end{bmatrix}. \end{equation*}
then
\begin{align*} T_1(\mathbf{u}+\mathbf{v})\amp =T_1\left(\begin{bmatrix} u_1\\ u_2 \end{bmatrix}+\begin{bmatrix} v_1\\ v_2 \end{bmatrix}\right) \\ \amp =T_1\left(\begin{bmatrix} u_1+v_1\\ u_2+v_2 \end{bmatrix}\right) \\ \amp =\begin{bmatrix} u_1+v_1-u_2-v_2\\ u_1+v_1 \end{bmatrix} \\ \amp =\begin{bmatrix} u_1-u_2\\ u_1 \end{bmatrix}+\begin{bmatrix} v_1-v_2\\ v_1 \end{bmatrix} \\ \amp=T_1\left(\begin{bmatrix} u_1\\ u_2 \end{bmatrix}\right)+T_1\left(\begin{bmatrix} v_1\\ v_2 \end{bmatrix}\right) \\ \amp =T_1(\mathbf{u})+T_1(\mathbf{v}). \end{align*}
It turns out that \(T_2\) fails to satisfy this property. Can you prove that this is the case? Remember that to prove that a property does not hold, it suffices to find a counter-example. See if you can find vectors \(\mathbf{u}\) and \(\mathbf{v}\) such that
\begin{equation} T_2(\mathbf{u}+\mathbf{v}) \neq T_2(\mathbf{u})+T_2(\mathbf{v}).\tag{2.6.3} \end{equation}
See Exercise 2.6.4.2 for more on this.
Transformations satisfying (2.6.1) and (2.6.2), like \(T_1\text{,}\) are called linear transformations. Transformations like \(T_2\) are not linear. You have encountered several linear transformations in the form of matrix transformations previously.

Definition 2.6.2.

A transformation \(T:\R^n\rightarrow \R^m\) is called a linear transformation if the following are true for all vectors \(\mathbf{u}\) and \(\mathbf{v}\) in \(\R^n\text{,}\) and scalars \(k\text{.}\)
\begin{equation} T(k\mathbf{u})= kT(\mathbf{u})\tag{2.6.4} \end{equation}
\begin{equation} T(\mathbf{u}+\mathbf{v})= T(\mathbf{u})+T(\mathbf{v})\tag{2.6.5} \end{equation}
Equations (2.6.4) and (2.6.5) of the above definition can be illustrated diagrammatically as follows.
Linearity drawn as function diagram
In this diagram, the vectical arrows are the operation of scalar multiplication by \(k\) and the horizontal arrows are the operation of applying the linear transformation \(T\text{.}\)
Continuation of above
In this diagram, the vectical arrows are the operation of vector addition, either adding \(u\) and \(v\) or adding \(T(u)\) and \(T(v)\text{.}\) The horizontal arrows are the operation of applying the linear transformation \(T\text{.}\)

Remark 2.6.3.

The properties (2.6.4) and (2.6.5) are often combined into a single property, namely that for all scalars \(k\) and \(l\) and for all vectors \(u\) and \(v\)
\begin{equation} T(k\mathbf{u}+l\mathbf{v})= kT(\mathbf{u})+lT(\mathbf{v})\tag{2.6.6} \end{equation}

Example 2.6.4.

Suppose \(T:\R^2\rightarrow \R^3\) is a linear transformation such that
\begin{equation*} T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)=\begin{bmatrix}-1\\0\\3\end{bmatrix}\quad\text{and}\quad T\left(\begin{bmatrix}0\\-1\end{bmatrix}\right)=\begin{bmatrix}2\\-1\\0\end{bmatrix}. \end{equation*}
Find each of the following:
  1. \begin{equation*} T\left(\begin{bmatrix}2\\5\end{bmatrix}\right)=T\left(2\begin{bmatrix}1\\2\end{bmatrix}-\begin{bmatrix}0\\-1\end{bmatrix}\right). \end{equation*}
  2. \begin{equation*} T\left(\begin{bmatrix}1\\1\end{bmatrix}\right). \end{equation*}
Answer.
Item 1: Because \(T\) is a linear transformation, it satisfies (2.6.6). We compute:
\begin{align*} T\left(\begin{bmatrix}2\\5\end{bmatrix}\right)\amp =T\left(2\begin{bmatrix}1\\2\end{bmatrix}-\begin{bmatrix}0\\-1\end{bmatrix}\right) \\ \amp =2T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)-T\left(\begin{bmatrix}0\\-1\end{bmatrix}\right) \\ \amp =2\begin{bmatrix}-1\\0\\3\end{bmatrix}-\begin{bmatrix}2\\-1\\0\end{bmatrix} \\ \amp =\begin{bmatrix}-2\\0\\6\end{bmatrix}-\begin{bmatrix}2\\-1\\0\end{bmatrix}=\begin{bmatrix}-4\\1\\6\end{bmatrix}. \end{align*}
Item 2 Observe that
\begin{equation*} \begin{bmatrix}1\\1\end{bmatrix}=\begin{bmatrix}1\\2\end{bmatrix}+\begin{bmatrix}0\\-1\end{bmatrix}. \end{equation*}
By (2.6.6) we have:
\begin{align*} T\left(\begin{bmatrix}1\\1\end{bmatrix}\right)\amp =T\left(\begin{bmatrix}1\\2\end{bmatrix}+\begin{bmatrix}0\\-1\end{bmatrix}\right) \\ \amp =T\left(\begin{bmatrix}1\\2\end{bmatrix}\right)+T\left(\begin{bmatrix}0\\-1\end{bmatrix}\right) \\ \amp =\begin{bmatrix}-1\\0\\3\end{bmatrix}+\begin{bmatrix}2\\-1\\0\end{bmatrix}=\begin{bmatrix}1\\-1\\3\end{bmatrix}. \end{align*}

Observation 2.6.5.

In Example 2.6.4 we were given the images of two vectors, \([1,2]\) and \([0,-1]\text{,}\) under a linear transformation \(T\text{.}\)
Based on this information, we were able to determine the images of two additional vectors: \([2,5]\) and \([1,1]\text{.}\) The reason we were able to determine \(T([2,5])\) and \(T([1,1])\) is because \([2,5]\) and \([1,1]\) can be written as unique linear combinations of \([1,2]\) and \([0,-1]\text{.}\)

Problem 2.6.6.

Can every vector of \(\R^2\) be written as a linear combination of \([1,2]\) and \([0,-1]\text{?}\)
Answer.
Yes.

Problem 2.6.7.

Is the information provided in Example 2.6.4 sufficient to determine the image of every vector in \(\R^2\) under \(T\text{?}\)
Answer.
Yes.

Example 2.6.8.

Suppose \(T:\R^2\rightarrow\R^2\) is a transformation such that
\begin{equation*} T\left(\begin{bmatrix} 2\\ 1 \end{bmatrix}\right)=\begin{bmatrix} 3\\ 2 \end{bmatrix},\,\,\,T\left(\begin{bmatrix} -1\\ 0 \end{bmatrix}\right)=\begin{bmatrix} 1\\ 1 \end{bmatrix},\,\,\,T\left(\begin{bmatrix} -1\\ 1 \end{bmatrix}\right)=\begin{bmatrix} 2\\ -4 \end{bmatrix}. \end{equation*}
Determine whether \(T\) is a linear transformation.
Answer.
Observe that
\begin{equation*} \begin{bmatrix} -1\\ 1 \end{bmatrix}=\begin{bmatrix} 2\\ 1 \end{bmatrix}+3\begin{bmatrix} -1\\ 0 \end{bmatrix} \end{equation*}
If \(T\) were a linear transformation, then we would have:
\begin{equation*} T\left(\begin{bmatrix} -1\\ 1 \end{bmatrix}\right)=T\left(\begin{bmatrix} 2\\ 1 \end{bmatrix}+3\begin{bmatrix} -1\\ 0 \end{bmatrix}\right)=\begin{bmatrix} 3\\ 2 \end{bmatrix}+3\begin{bmatrix} 1\\ 1 \end{bmatrix}=\begin{bmatrix} 6\\ 5 \end{bmatrix}. \end{equation*}
But according to the given,
\begin{equation*} T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right)=\begin{bmatrix}2\\-4\end{bmatrix} \end{equation*}
Since \(\begin{bmatrix} 6\\ 5 \end{bmatrix}\neq \begin{bmatrix} 2\\ -4 \end{bmatrix}\) we conclude that transformation \(T\) is not linear.
In Exploration 2.6.1 we introduced a transformation \(T_2\) which turned out to be non-linear. It took some work to show that \(T_2\) is not linear. The following theorem would have made our work easier.

Proof.

To prove Item 1, let \(\mathbf{v}\) be any vector in \(\R^n\text{.}\) By linearity of \(T\text{,}\) we have:
\begin{equation*} T(\mathbf{0})=T(\mathbf{v}-\mathbf{v})=T(\mathbf{v})-T(\mathbf{v})=\mathbf{0}. \end{equation*}
Part Item 2 will become evident after the next section by combinining observations there with Exercise 2.5.5.3.

Example 2.6.10.

Use Theorem 2.6.9 to show that transformation \(T_2\) of Exploration 2.6.1 is not linear.
Answer.
Recall that \(T_2:\R^2\rightarrow\R^2\) was defined by
\begin{equation*} T_2\left(\begin{bmatrix} x\\ y \end{bmatrix}\right)=\begin{bmatrix} -x+y+1\\ y-2 \end{bmatrix} \end{equation*}
We evaluate \(T_2\) at \(\mathbf{0}\text{:}\)
\begin{equation*} T_2(\mathbf{0})=\begin{bmatrix} -0+0+1\\ 0-2 \end{bmatrix}=\begin{bmatrix}1\\-2\end{bmatrix}\neq\mathbf{0} \end{equation*}
Since \(T_2(\mathbf{0})\neq\mathbf{0}\text{,}\) \(T_2\) is not linear.

Proof.

Let \(\mathbf{u}\) and \(\mathbf{v}\) be vectors in \(\R^n\text{,}\) and let \(k\) be a scalar. By properties of matrix multiplication we have:
\begin{equation*} T(\mathbf{u}+\mathbf{v})=A(\mathbf{u}+\mathbf{v})=A\mathbf{u}+A\mathbf{v}=T(\mathbf{u})+T(\mathbf{v}), \end{equation*}
\begin{equation*} T(k\mathbf{u})=A(k\mathbf{u})=kA\mathbf{u}=kT(\mathbf{u}). \end{equation*}
Therefore \(T\) is a linear transformation.

Example 2.6.12.

Let \(T:\R^n\rightarrow\R^m\) be a linear transformation induced by
\begin{equation*} A=\begin{bmatrix} 2\amp 0\\ 1\amp 4\\ 0\amp 1 \end{bmatrix} \end{equation*}
  1. Find \(n\) and \(m\text{.}\)
  2. Find the image of \(T\text{.}\)
Answer.
Item 1 \(A\) is a \(3\times 2\) matrix, so for the expression \(T(\mathbf{x})=A\mathbf{x}\) to make sense, \(\mathbf{x}\) has to be a \(2\times 1\) vector. Thus, the domain of \(T\) is \(\R^2\) (\(n=2\)). The product \(A\mathbf{x}\) is a \(3\times 1\) vector. The codomain of \(T\) is \(\R^3\) (\(m=3\)). Item 2 By Definition 2.5.2, the image of \(T\) consists of images of all individual vectors in \(\R^2\) under \(T\text{.}\)
Every vector \(\mathbf{v}\) in \(\R^2\) can be written as \(\mathbf{v}=a\mathbf{i}+b\mathbf{j}\) for some real numbers \(a\) and \(b\text{.}\) Consider the image of \(\mathbf{v}\text{:}\)
\begin{equation*} T(\mathbf{v})=T(a\mathbf{i}+b\mathbf{j})=aT(\mathbf{i})+bT(\mathbf{j})=a\begin{bmatrix}2\\1\\0\end{bmatrix}+b\begin{bmatrix}0\\4\\1\end{bmatrix}. \end{equation*}
This shows that the range, or the image, of \(T\) consists of all linear combinations of the columns of \(A\text{.}\) In other words, the image of \(T\) is the span of vectors \([2,1,0]\) and \([0,4,1]\text{.}\) The two vectors are not scalar multiples of each other, therefore they span a plane in \(\R^3\text{.}\)

Example 2.6.13.

Let \(T:\R^n\rightarrow\R^m\) be a linear transformation induced by
\begin{equation*} A=\begin{bmatrix} -2\amp 1\amp 3\\ 4\amp -2\amp -6 \end{bmatrix} \end{equation*}
  1. Find \(n\) and \(m\text{.}\)
  2. Find and draw the image of \(T\text{.}\)
Answer.
For part Item 1: \(n=3 \) and \(m = 2 \text{.}\)
For Item 2: To find the image of \(T\text{,}\) we will take a slightly different approach from what we did in Example 2.6.12Item 2.
Let \(\mathbf{v}=[a,b,c]\) be an arbitrary vector of \(\R^3\text{.}\) The image of \(\mathbf{v}\) is given by
\begin{align*} T(\mathbf{v})=\begin{bmatrix} -2\amp 1\amp 3\\ 4\amp -2\amp -6 \end{bmatrix}\begin{bmatrix}a\\b\\c\end{bmatrix}\amp =a\begin{bmatrix}-2\\4\end{bmatrix}+b\begin{bmatrix}1\\-2\end{bmatrix}+c\begin{bmatrix}3\\-6\end{bmatrix} \\ \amp =(a(-2)+b+c(3))\begin{bmatrix}1\\-2\end{bmatrix}. \end{align*}
This shows that the image of every vector in \(\R^3\) is a scalar multiple of \([1,-2]\text{.}\) This means that the image of \(T\) is a line in \(\R^2\text{.}\)
Line generated is graphed

Subsection 2.6.2 Standard Matrix of a Linear Transformation from \(\R^n\) to \(\R^m\)

In the preceding sections, we learned several important properties of matrix transformations of \(\R^n\) and subspaces of \(\R^n\text{.}\) Let’s summarize the main points.
The last point in the summary is so important that it is worth illustrating again.

Example 2.6.15.

Let \(T:\R^3\rightarrow \R^2\) be a linear transformation. Suppose that the only information we have about this transformation is that
\begin{equation*} T(\mathbf{i})=\begin{bmatrix}3\\-1\end{bmatrix}, \quad T(\mathbf{j})=\begin{bmatrix}0\\4\end{bmatrix} \quad \text{and} \quad T(\mathbf{k})=\begin{bmatrix}-2\\1\end{bmatrix}. \end{equation*}
Is this information sufficient to determine the image of \(\mathbf{w}=\begin{bmatrix}1\\-3\\6\end{bmatrix}\text{?}\)
Answer.
Observe that
\begin{equation*} \mathbf{w}=\mathbf{i}-3\mathbf{j}+6\mathbf{k} \end{equation*}
We find \(T(\mathbf{w})\) by using the fact that \(T\) is linear:
\begin{align*} T(\mathbf{w}) \amp =T(\mathbf{i}-3\mathbf{j}+6\mathbf{k}) \\ \amp=T(\mathbf{i})-3T(\mathbf{j})+6T(\mathbf{k}) \\ \amp=\begin{bmatrix}3\\-1\end{bmatrix}-3\begin{bmatrix}0\\4\end{bmatrix}+6\begin{bmatrix}-2\\1\end{bmatrix} \\ \amp=\begin{bmatrix}-9\\-7\end{bmatrix} \end{align*}
Because of properties of linear transformations, the information about the images of the standard unit vectors proved to be sufficient for us to determine the image of \(\mathbf{w}\text{.}\)
In Example 2.6.15, there was nothing special about the vector \(\mathbf{w}\text{.}\) Any vector \(\mathbf{x}\) of \(\R^n\) can be written as a unique linear combination of the standard unit vectors \(\mathbf{e}_1,\ldots , \mathbf{e}_n\text{.}\) Therefore, the image of any vector \(\mathbf{x}\) under a linear transformation \(T:\R^n\rightarrow \R^m\) is uniquely determined by the images of \(\mathbf{e}_1, \ldots , \mathbf{e}_n\text{.}\) Knowing \(T(\mathbf{e}_1),\ldots , T(\mathbf{e}_n)\) allows us to construct a matrix \(A\text{,}\) with \(T(\mathbf{e}_1),\ldots , T(\mathbf{e}_n)\) as columns, that induces transformation \(T\text{.}\) We formalize this idea in a theorem.

Proof.

Observe that
\begin{align*} \mathbf{x}=\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix} \amp=x_1\begin{bmatrix}1\\0\\\vdots\\0\end{bmatrix}+x_2\begin{bmatrix}0\\1\\\vdots\\0\end{bmatrix}+\dots+x_n\begin{bmatrix}0\\0\\\vdots\\1\end{bmatrix} \\ \amp=x_1\mathbf{e}_1+x_2\mathbf{e}_2+\dots+x_n\mathbf{e}_n. \end{align*}
Because \(T\) is linear, we have
\begin{align*} T(\mathbf{x})\amp =T(x_1\mathbf{e}_1+x_2\mathbf{e}_2+\dots+x_n\mathbf{e}_n) \\ \amp=x_1T(\mathbf{e}_1)+x_2T(\mathbf{e}_2)+\dots+x_nT(\mathbf{e}_n) \\ \amp =\begin{bmatrix} | \amp |\amp \amp |\\ T(\mathbf{e}_1) \amp T(\mathbf{e}_2)\amp \dots \amp T(\mathbf{e}_n)\\ |\amp | \amp \amp | \end{bmatrix}\begin{bmatrix}x_1\\x_2\\\vdots\\x_n\end{bmatrix}=A\mathbf{x}. \end{align*}
Thus, for every \(\mathbf{x}\) in \(\R^n\text{,}\) we have \(T(\mathbf{x})=A\mathbf{x}\text{.}\)
Theorem 2.6.11 shows that every matrix transformation is linear. Theorem 2.6.16 states that every linear transformation from \(\R^n\) into \(\R^m\) is a matrix transformation. We combine these results in a corollary.
The results of this section rely on the fact that every vector of \(\R^n\) can be written as a unique linear combination of the standard unit vectors \(\mathbf{e}_1,\mathbf{e}_2,\dots,\mathbf{e}_n\text{.}\) Since we are using the standard unit vectors, it is natural to name the matrix in Theorem 2.6.16 accordingly.

Definition 2.6.18.

The matrix in Theorem 2.6.16 is known as the standard matrix of the linear transformation \(T\text{.}\)

Example 2.6.19.

The standard matrix of a linear transformation \(T:\R^3\rightarrow \R^2\) such that
\begin{equation*} T(\mathbf{i})=\begin{bmatrix}2\\-1\end{bmatrix}, \quad T(\mathbf{j})=\begin{bmatrix}-1\\3\end{bmatrix} \quad \text{and} \quad T(\mathbf{k})=\begin{bmatrix}0\\4\end{bmatrix} \end{equation*}
is
\begin{equation*} A=\begin{bmatrix}2\amp -1\amp 0\\-1\amp 3\amp 4\end{bmatrix}. \end{equation*}

Example 2.6.20.

Find the standard matrix of a linear transformation \(T:\R^2\rightarrow \R^2\) such that \(T(\mathbf{i})=2\mathbf{i}\) and \(T(\mathbf{j})=2\mathbf{j}\text{.}\)
Answer.
We use the images of \(\mathbf{i}\) and \(\mathbf{j}\) as columns of the matrix. The standard matrix of \(T\) is
\begin{equation*} \begin{bmatrix}2\amp 0\\0\amp 2\end{bmatrix}. \end{equation*}

Example 2.6.21.

Find the standard matrix of a linear transformation \(T:\R^2\rightarrow \R^4\text{,}\) where
\begin{equation*} T\left(\begin{bmatrix}3\\1\end{bmatrix}\right)=\begin{bmatrix}6\\1\\13\\-1\end{bmatrix} \quad \text{and} \quad T\left(\begin{bmatrix}-2\\0\end{bmatrix}\right)=\begin{bmatrix}-2\\0\\-8\\2\end{bmatrix}. \end{equation*}
Answer.
In this example we are not given the images of the standard unit vectors \(\mathbf{i}\) and \(\mathbf{j}\text{.}\) However, we can find the images of \(\mathbf{i}\) and \(\mathbf{j}\) by expressing \(\mathbf{i}\) and \(\mathbf{j}\) as linear combinations of \([3,1]\) and \([-2,0]\text{,}\) then apply the fact that \(T\) is linear. Let’s start with the easy one.
\begin{equation*} \mathbf{i}=-\frac{1}{2}\begin{bmatrix}-2\\0\end{bmatrix}. \end{equation*}
Therefore, by linearity of \(T\text{,}\) we have:
\begin{equation*} T(\mathbf{i})=T\left(-\frac{1}{2}\begin{bmatrix}-2\\0\end{bmatrix}\right)=-\frac{1}{2}T\left(\begin{bmatrix}-2\\0\end{bmatrix}\right)=-\frac{1}{2}\begin{bmatrix}-2\\0\\-8\\2\end{bmatrix}=\begin{bmatrix}1\\0\\4\\-1\end{bmatrix}. \end{equation*}
This gives us the first column of the standard matrix for \(T\text{.}\)
You can solve the vector equation
\begin{equation*} a\begin{bmatrix}3\\1\end{bmatrix}+b\begin{bmatrix}-2\\0\end{bmatrix}=\mathbf{j} \end{equation*}
to express \(\mathbf{j}\) as a linear combination of \([3,1]\) and \([-2,0]\) as follows:
\begin{equation*} \mathbf{j}=\begin{bmatrix}3\\1\end{bmatrix}+\frac{3}{2}\begin{bmatrix}-2\\0\end{bmatrix}. \end{equation*}
By linearity of \(T\text{,}\)
\begin{align*} T(\mathbf{j})\amp =T\left(\begin{bmatrix}3\\1\end{bmatrix}+\frac{3}{2}\begin{bmatrix}-2\\0\end{bmatrix}\right) \\ \amp =T\left(\begin{bmatrix}3\\1\end{bmatrix}\right)+\frac{3}{2}T\left(\begin{bmatrix}-2\\0\end{bmatrix}\right) \\ \amp =\begin{bmatrix}6\\1\\13\\-1\end{bmatrix}+\frac{3}{2}\begin{bmatrix}-2\\0\\-8\\2\end{bmatrix}=\begin{bmatrix}3\\1\\1\\2\end{bmatrix}. \end{align*}
This gives us the second column of the standard matrix. Putting all of the information together, we get the following standard matrix for \(T\text{:}\)
\begin{equation*} A=\begin{bmatrix}1\amp 3\\0\amp 1\\4\amp 1\\-1\amp 2\end{bmatrix}. \end{equation*}

Subsection 2.6.3 Injective and Surjective Linear Transformations

Given a linear transformation \(T:\R^n\rightarrow \R^m\text{,}\) it is natural to ask the following questions:
  1. Given a vector \(\mathbf{b}\) in \(\R^m\) such that \(T(\mathbf{x})=\mathbf{b}\) for some \(\mathbf{x}\) in \(\R^n\text{,}\) is \(\mathbf{x}\) unique? That is, does each \(\mathbf{x}\) map to a unique vector in \(\R^m\text{?}\)
  2. Does every vector \(\mathbf{b}\) in \(\R^m\) have a pre-image in \(\R^n\) under \(T\text{?}\) Meaning, is every vector in \(\R^m\) mapped to by \(T\text{?}\)
The first question leads us to the concept of injective transformations.

Definition 2.6.22.

A linear transformation \(T:\R^n\rightarrow \R^m\) is injective or sometimes called one-to-one if for every \(\mathbf{b}\) in \(\R^m\) is the image of at most one vector \(\mathbf{x}\) in \(\R^n\) under \(T\text{.}\) In other words,
\begin{equation*} T(\mathbf{x}_1)=T(\mathbf{x}_2)\quad \text{implies that}\quad \mathbf{x}_1=\mathbf{x}_2. \end{equation*}

Example 2.6.23.

Determine if the transformation \(T:\R^2\to\R^2\) defined by
\begin{equation*} T(\mathbf{x})=\begin{bmatrix} 1\amp 1\\ 2\amp 2\end{bmatrix}\mathbf{x} \end{equation*}
is injective.
Answer.
This transformation is not injective. We can use any two vectors of the form \(\begin{bmatrix}k\\-k\end{bmatrix}\) to make our case.
\begin{equation*} T\left(\begin{bmatrix}1\\-1\end{bmatrix}\right)=\mathbf{0}=T\left(\begin{bmatrix}-2\\2\end{bmatrix}\right)\quad \text{but}\quad\begin{bmatrix}1\\-1\end{bmatrix}\neq \begin{bmatrix}-2\\2\end{bmatrix}. \end{equation*}
In other words, we have more than one vector that maps to the zero vector.

Example 2.6.24.

Consider the transformation \(T:\R^2\to\R^3\) with standard matrix
\begin{equation*} A = \begin{bmatrix}1\amp 0\\0\amp 1\\2\amp 0\end{bmatrix}. \end{equation*}
Is \(T\) injective?
Answer.
Suppose
\begin{equation*} T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right)=T\left(\begin{bmatrix}y_1\\y_2\end{bmatrix}\right) \end{equation*}
Then
\begin{equation*} \begin{bmatrix}1\amp 0\\0\amp 1\\2\amp 0\end{bmatrix}\begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}1\amp 0\\0\amp 1\\2\amp 0\end{bmatrix}\begin{bmatrix}y_1\\y_2\end{bmatrix}. \end{equation*}
\begin{equation*} x_1\begin{bmatrix}1\\0\\2\end{bmatrix}+x_2\begin{bmatrix}0\\1\\0\end{bmatrix}=y_1\begin{bmatrix}1\\0\\2\end{bmatrix}+y_2\begin{bmatrix}0\\1\\0\end{bmatrix}. \end{equation*}
\begin{equation*} (x_1-y_1)\begin{bmatrix}1\\0\\2\end{bmatrix}+(x_2-y_2)\begin{bmatrix}0\\1\\0\end{bmatrix}=\mathbf{0}. \end{equation*}
It is clear that \(\begin{bmatrix}1\\0\\2\end{bmatrix}\) and \(\begin{bmatrix}0\\1\\0\end{bmatrix}\) are linearly independent. Therefore, we must have \(x_1-y_1=0\) and \(x_2-y_2=0\text{.}\) But then \(x_1=y_1\) and \(x_2=y_2\text{,}\) so
\begin{equation*} \begin{bmatrix}x_1\\x_2\end{bmatrix}=\begin{bmatrix}y_1\\y_2\end{bmatrix}. \end{equation*}
The second question leads us to another concept: surjective transformations.

Definition 2.6.25.

A linear transformation \(T:\R^n\rightarrow \R^m\) is surjective, or sometimes called onto, if every vector \(\mathbf{b}\) in \(\R^m\) is the image of some vector \(\mathbf{x}\) in \(\R^n\text{.}\) That is, for each \(\mathbf{b}\) in \(\R^m\text{,}\) there exists an \(\mathbf{x}\) in \(\R^n\) such that \(T(\mathbf{x})=\mathbf{b}\text{.}\)
Let’s illustrate the concept of surjective transformations with an example.

Example 2.6.26.

The transformation in Example 2.6.24 is not onto.
Answer.
No element of \(\R^2\) maps to \(\begin{bmatrix}1\\1\\1\end{bmatrix}\text{.}\)
In Example 2.6.23 and Example 2.6.26, we saw that showing a transformation is not injective or not surjective only takes a single counterexample. However, to show a transformation is injective or surjective, we need to prove that the property holds for all vectors in the domain or codomain, like we did in Example 2.6.24. Fortunately, we have some tools from our study of linear systems that will helps us.
By Theorem 2.6.16, every linear transformation \(T:\R^n\to\R^m\) is a matrix transformation with standard matrix \(A\text{.}\) The properties of the standard matrix \(A\) can help us determine if \(T\) is injective or surjective.

Question 2.6.27.

Let \(T\) be a linear transformation from \(\R^n\) to \(\R^m\) with standard matrix \(A\text{.}\) So, \(T(\mathbf{x})=A\mathbf{x}\) for all \(\mathbf{x}\in\R^n\text{.}\) We now turn our attention to the following questions:
  1. What are the conditions on \(A\) that guarantee that \(T\) is injective?
  2. What are the conditions on \(A\) that guarantee that \(T\) is surjective?
Answer.
To answer the first question, we need to find conditions on \(A\) that ensure that the solution to the matrix equation \(A\mathbf{x}=\mathbf{b}\) has at most one solution. This is equivalent to saying the RREF of the augmented matrix \(\left[A|\mathbf{b}\right]\) has no free variables or that the RREF of \(A\) has a pivot in every column. Recall that if \(A\) has a pivot in every column, then the columns of \(A\) are linearly independent. Notice this was exactly the condition we used in Example 2.6.24 to show that the transformation was injective.
Now to answer the second question. We need to find conditions on \(A\) that ensure that the matrix equation \(A\mathbf{x}=\mathbf{b}\) has a solution for every \(\mathbf{b}\) in \(\R^m\text{.}\) We need at least one solution, so it will be okay if there are infinitely many solutions. Meaning, the condition will be different from our answer to Item 1. So, how do we guarantee that the matrix equation \(A\mathbf{x}=\mathbf{b}\) always has a solution for every \(\mathbf{b}\text{?}\) Well, the only time we could have no solution is when the RREF of the augmented matrix \(\left[A|\mathbf{b}\right]\) has a row of the form \([0\ 0\ \dots\ 0\ | 1]\text{.}\) To prevent this from happening, we need to ensure that the RREF of \(A\) has a pivot in every row.
We summarize the answers to Question 2.6.27 in the following theorem.
Now let’s apply Theorem 2.6.28 to some examples.

Example 2.6.29.

Determine if the linear transformation \(T:\R^2\rightarrow \R^2\) whose standard matrix is
\begin{equation*} A=\begin{bmatrix}1\amp 0\\2\amp 1\end{bmatrix} \end{equation*}
is surjective.
Answer.
The RREF of \(A\) is
\begin{equation*} \mbox{rref}(A)=\begin{bmatrix}1\amp 0\\0\amp 1\end{bmatrix}. \end{equation*}
Since the RREF of \(A\) has a pivot in every row, we conclude that \(T\) is surjective.

Example 2.6.30.

Determine if the linear transformation \(T:\R^3\rightarrow \R^2\) induced by
\begin{equation*} A=\begin{bmatrix}1\amp 1\amp -1\\2\amp 3\amp -1\end{bmatrix} \end{equation*}
is injective, surjective, or both.
Answer.
The RREF of \(A\) is
\begin{equation*} \mbox{rref}(A)=\begin{bmatrix}1\amp 0\amp -2\\0\amp 1\amp 1\end{bmatrix}. \end{equation*}
Since the RREF of \(A\) has a pivot in every row, we conclude that \(T\) is surjective. However, since the RREF of \(A\) does not have a pivot in every column, we conclude that \(T\) is not injective.

Exercises 2.6.4 Exercises

1.

Show that (2.6.2) of Exploration 2.6.1 holds for vectors \(\begin{bmatrix}3\\4\end{bmatrix}\) and \(\begin{bmatrix}-2\\1\end{bmatrix}\text{.}\)

3.

Suppose \(T:\R^{10}\rightarrow\R^2\) is a linear transformation such that \(T(\mathbf{u})=[2,-1]\) and \(T(\mathbf{v})=[-5,3]\text{.}\) Find the image of \(3\mathbf{u}-\mathbf{v}\text{.}\)
Answer.
\begin{equation*} T(3\mathbf{u}-\mathbf{v})=\begin{bmatrix}11\\-6\end{bmatrix}. \end{equation*}

4.

Let \(\mathbf{u}\) be a fixed vector. Define \(T_{\mathbf{u}}:\R^2\rightarrow\R^2\text{,}\) by \(T_{\mathbf{u}}(\mathbf{x})=\mathbf{u}-\mathbf{x}\text{.}\)
  1. Describe the effect of this transformation by sketching \({\bf x}\) and \(T_{\mathbf{u}}({\bf x})\) for at least four vectors \({\bf x}\) and a fixed vector \(\mathbf{u}\) of your choice.
  2. Is \(T_{\mathbf{u}}\) a linear transformation?

5.

Define \(P_{xy}:\R^3\rightarrow\R^2\text{,}\) by
\begin{equation*} P_{xy}\left(\begin{bmatrix} x\\ y\\ z \end{bmatrix} \right)=\begin{bmatrix} x\\ y \end{bmatrix}. \end{equation*}
This transformation is called an orthogonal projection onto the \(xy\)-plane. Show that \(P_{xy}\) is a linear transformation.

6.

Suppose a linear transformation \(T:\R^3\rightarrow\R^3\) maps
\begin{equation*} \mathbf{i} \ \text{to} \ \begin{bmatrix}2\\-1\\0\end{bmatrix}, \quad \ \mathbf{j} \ \text{to} \ \begin{bmatrix}-2\\4\\1\end{bmatrix}, \quad \text{and} \quad \mathbf{k} \ \text{to} \ \begin{bmatrix}3\\0\\-5\end{bmatrix}. \end{equation*}
Find the image of \(\begin{bmatrix}1\\1\\-2\end{bmatrix}\) under \(T\text{.}\)
Answer.
\begin{equation*} T\left(\begin{bmatrix}1\\1\\-2\end{bmatrix}\right)=\begin{bmatrix}-6\\3\\11\end{bmatrix}. \end{equation*}

7.

Suppose that a linear transformation \(T:\R^2\rightarrow\R^3\) is such that
\begin{equation*} T(\mathbf{i})=\begin{bmatrix}-4\\2\\1\end{bmatrix} \quad \text{and} \quad T(\mathbf{j})=\begin{bmatrix}0\\-1\\5\end{bmatrix}. \end{equation*}
Find
\begin{equation*} T\Big(\begin{bmatrix}4\\-1\end{bmatrix}\Big)\text{.} \end{equation*}
Answer.
\begin{equation*} T\Big(\begin{bmatrix}4\\-1\end{bmatrix}\Big)=\begin{bmatrix}-16\\9\\-1\end{bmatrix}. \end{equation*}

8.

Suppose that a linear transformation \(T:\R^2\rightarrow\R^3\) is such that
\begin{equation*} T\Big(\begin{bmatrix}1\\-1\end{bmatrix}\Big)=\begin{bmatrix}1\\4\\-1\end{bmatrix} \quad \text{and} \quad T\Big(\begin{bmatrix}2\\0\end{bmatrix}\Big)=\begin{bmatrix}0\\6\\4\end{bmatrix}\text{.} \end{equation*}
Find the standard matrix \(A\) of \(T\text{.}\)
Answer.
\begin{equation*} A=\begin{bmatrix}0\amp -1\\3\amp -1\\2\amp 3\end{bmatrix}. \end{equation*}

Exercise Group.

Find the standard matrix \(A\) of each linear transformation \(T:\R^2\rightarrow\R^2\) described below.
9.
\(T\) doubles the \(x\) component of every vector and triples the \(y\) component.
Answer.
\begin{equation*} A=\begin{bmatrix}2\amp 0\\0\amp 3\end{bmatrix}. \end{equation*}
10.
\(T\) reverses the direction of each vector.
Answer.
\begin{equation*} A=\begin{bmatrix}-1\amp 0\\0\amp -1\end{bmatrix}. \end{equation*}
11.
\(T\) doubles the length of each vector.
Answer.
\begin{equation*} A=\begin{bmatrix}2\amp 0\\0\amp 2\end{bmatrix} \end{equation*}
12.
\(T\) projects each vector onto the \(x\)-axis. (e.g. \(T([4,5])=[4,0]\)).
Answer.
\begin{equation*} A=\begin{bmatrix}1\amp 0\\0\amp 0\end{bmatrix}. \end{equation*}
13.
\(T\) projects each vector onto the \(y\)-axis. (e.g. \(T([4,5])=[0,5]\))
Answer.
\begin{equation*} A=\begin{bmatrix}0\amp 0\\0\amp 1\end{bmatrix}. \end{equation*}

14.

Show that a linear transformation \(T:\R^2\rightarrow \R^2\) with standard matrix
\begin{equation*} A=\begin{bmatrix}2\amp -4\\-3\amp 6\end{bmatrix} \end{equation*}
is not injective.
Hint.
Show that multiple vectors map to \(\mathbf{0}\text{.}\)

15.

Show that a linear transformation \(T:\R^2\rightarrow \R^3\) with standard matrix
\begin{equation*} A=\begin{bmatrix}1\amp 2\\-1\amp 1\\0\amp 1\end{bmatrix} \end{equation*}
is not surjective.
Hint.
Find \(\mathbf{b}\) such that \(A\mathbf{x}=\mathbf{b}\) has no solutions.

16.

Suppose that a linear transformation \(T:\R^3\rightarrow \R^3\) has a standard matrix \(A\) such that \(\text{rref}(A)=I\text{.}\) Prove that \(T\) is injective and surjective
Hint 1.
For the injective verification, does \(A\mathbf{x}=\mathbf{b}\) have a solution for every \(\mathbf{b}\text{?}\)
Hint 2.
For the surjective verification, how many solutions does \(A\mathbf{x}=\mathbf{b}\) have?