First, assume that \(V\cong W\text{.}\) Then there exists an isomorphism \(T:V\rightarrow W\text{.}\) Suppose \(\mbox{dim}(V)=n\) and let
\begin{equation*}
\{\mathbf{v}_1,\mathbf{v}_2,\ldots ,\mathbf{v}_n\}
\end{equation*}
\begin{equation*}
\{T(\mathbf{v}_1),\ldots ,T(\mathbf{v}_n)\}
\end{equation*}
is a basis for \(W\text{.}\) Therefore \(\mbox{dim}(W)=n\text{.}\)
Conversely, suppose \(\mbox{dim}(V)=\mbox{dim}(W)=n\text{,}\) and let
\begin{equation*}
\mathcal{B}=\{\mathbf{v}_1,\mathbf{v}_2,\ldots ,\mathbf{v}_n\},\quad
\mathcal{C}=\{\mathbf{w}_1,\mathbf{w}_2,\ldots ,\mathbf{w}_n\}
\end{equation*}
be bases for \(V\) and \(W\text{,}\) respectively. Define a linear transformation \(T:V\rightarrow W\) by \(T(\mathbf{v}_i)=\mathbf{w}_i\) for \(1\leq i\leq n\text{.}\) To show that \(T\) is an isomorphism, we need to prove that \(T\) is injective and surjective. Suppose \(T(\mathbf{u}_1)=T(\mathbf{u}_2)\) for some vectors \(\mathbf{u}_1\text{,}\) \(\mathbf{u}_2\) in \(V\text{.}\) We know that
\begin{equation*}
\mathbf{u}_1=a_1\mathbf{v}_1+\ldots +a_n\mathbf{v}_n,
\end{equation*}
\begin{equation*}
\mathbf{u}_2=b_1\mathbf{v}_1+\ldots +b_n\mathbf{v}_n,
\end{equation*}
for some scalars \(a_i\)’s and \(b_i\)’s. Thus,
\begin{equation*}
T(a_1\mathbf{v}_1+\ldots +a_n\mathbf{v}_n)=T(b_1\mathbf{v}_1+\ldots +b_n\mathbf{v}_n)
\end{equation*}
By linearity of \(T\text{,}\)
\begin{equation*}
a_1\mathbf{w}_1+\ldots +a_n\mathbf{w}_n=b_1\mathbf{w}_1+\ldots +b_n\mathbf{w}_n
\end{equation*}
\begin{equation*}
(a_1-b_1)\mathbf{w}_1+\ldots +(a_n-b_n)\mathbf{w}_n=\mathbf{0}
\end{equation*}
But \(\mathbf{w}_1,\mathbf{w}_2,\ldots ,\mathbf{w}_n\) are linearly independent, so \(a_i-b_i=0\) for all \(1\leq i\leq n\text{.}\) Therefore \(a_i=b_i\) for all \(1\leq i\leq n\text{.}\) We conclude that \(\mathbf{u}_1=\mathbf{u}_2\text{.}\) We now show that \(T\) is onto. Suppose that \(\mathbf{w}\) is an element of \(W\text{.}\) Then \(\mathbf{w}=c_1\mathbf{w}_1+\ldots +c_n\mathbf{w}_n\) for some scalars \(c_i\)’s. But then
\begin{equation*}
\mathbf{w}=c_1T(\mathbf{v}_1)+\ldots +c_nT(\mathbf{v}_n)=T(c_1\mathbf{v}_1+\ldots +c_n\mathbf{v}_n)
\end{equation*}
We conclude that \(\mathbf{w}\) is an image of an element of \(V\text{,}\) so \(T\) is onto.